Shock-Induced Anisotropic Metal Combustion

被引:20
作者
Chang, Xiaoya [1 ]
Chu, Qingzhao [1 ]
Chen, Dongping [1 ]
机构
[1] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
ALUMINUM PARTICLE COMBUSTION; REACTIVE FORCE-FIELD; OXIDATION; IGNITION; REAXFF; NANO; NANOPARTICLES; SIZE; DECOMPOSITION; CHEMISTRY;
D O I
10.1021/acs.jpcc.0c02876
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The progress of surface reactions can be largely impacted by anisotropic energy transfer. Here, we carried out reactive molecular dynamic simulations on aluminum nanoparticles in shock waves up to 8 km/s. From the analysis of particle morphological evolutions, heat and mass transfer, and reaction products, it is found that the shock-induced effect strongly correlates with flow velocity. We further elaborate oxidation mechanisms into three modes: diffusion oxidation (<2 km/s), anisotropic oxidation (2-5 km/s), and microexplosion oxidation (>5 km/s). The first mode corresponds to the typical isotropic mechanism of nanoparticles. In the second mode, shock induces an anisotropic temperature gradient via molecular collisions and triggers the ignition in one side. Further increasing the flow velocity, severe dispersion of small AlxOy clusters is identified as a microexplosion event. These three oxidation modes dedicate to interpret the effect of translational energy on surface reactions and supplement the current oxidation theory.
引用
收藏
页码:13206 / 13214
页数:9
相关论文
共 48 条
[31]   On the Reliability of Sensitivity Test Methods for Submicrometer-Sized RDX and HMX Particles [J].
Radacsi, Norbert ;
Bouma, Richard H. B. ;
Krabbendam-la Haye, Ellen L. M. ;
ter Horst, Joop H. ;
Stankiewicz, Andrzej I. ;
van der Heijden, Antoine E. D. M. .
PROPELLANTS EXPLOSIVES PYROTECHNICS, 2013, 38 (06) :761-769
[32]   Aluminum cluster for CO and O2 adsorption [J].
Samanta, Bipasa ;
Sengupta, Turbasu ;
Pal, Sourav .
JOURNAL OF MOLECULAR MODELING, 2019, 25 (01)
[33]   The effect of a shock wave on the ignition behavior of aluminum particles in a shock tube [J].
Schloeffel, G. ;
Eichhorn, A. ;
Albers, H. ;
Mundt, Ch. ;
Seiler, F. ;
Zhang, F. .
COMBUSTION AND FLAME, 2010, 157 (03) :446-454
[34]   The ReaxFF reactive force-field: development, applications and future directions [J].
Senftle, Thomas P. ;
Hong, Sungwook ;
Islam, Md Mahbubul ;
Kylasa, Sudhir B. ;
Zheng, Yuanxia ;
Shin, Yun Kyung ;
Junkermeier, Chad ;
Engel-Herbert, Roman ;
Janik, Michael J. ;
Aktulga, Hasan Metin ;
Verstraelen, Toon ;
Grama, Ananth ;
van Duin, Adri C. T. .
NPJ COMPUTATIONAL MATERIALS, 2016, 2
[35]   Computational Analysis Methods in Atomistic Modeling of Crystals [J].
Stukowski, Alexander .
JOM, 2014, 66 (03) :399-407
[37]   A general theory of ignition and combustion of nano- and micron-sized aluminum particles [J].
Sundaram, Dilip Srinivas ;
Puri, Puneesh ;
Yang, Vigor .
COMBUSTION AND FLAME, 2016, 169 :94-109
[38]   Pyrophoricity of nascent and passivated aluminum particles at nano-scales [J].
Sundaram, Dilip Srinivas ;
Puri, Puneesh ;
Yang, Vigor .
COMBUSTION AND FLAME, 2013, 160 (09) :1870-1875
[39]   Aluminum Particle Combustion in High-Speed Detonation Products [J].
Tanguay, V. ;
Goroshin, S. ;
Higgins, A. J. ;
Zhang, F. .
COMBUSTION SCIENCE AND TECHNOLOGY, 2009, 181 (04) :670-693
[40]   Cast aluminized explosives [J].
Vadhe, P. P. ;
Pawar, R. B. ;
Sinha, R. K. ;
Asthana, S. N. ;
Rao, A. Subhananda .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2008, 44 (04) :461-477