Shock-Induced Anisotropic Metal Combustion

被引:18
作者
Chang, Xiaoya [1 ]
Chu, Qingzhao [1 ]
Chen, Dongping [1 ]
机构
[1] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
ALUMINUM PARTICLE COMBUSTION; REACTIVE FORCE-FIELD; OXIDATION; IGNITION; REAXFF; NANO; NANOPARTICLES; SIZE; DECOMPOSITION; CHEMISTRY;
D O I
10.1021/acs.jpcc.0c02876
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The progress of surface reactions can be largely impacted by anisotropic energy transfer. Here, we carried out reactive molecular dynamic simulations on aluminum nanoparticles in shock waves up to 8 km/s. From the analysis of particle morphological evolutions, heat and mass transfer, and reaction products, it is found that the shock-induced effect strongly correlates with flow velocity. We further elaborate oxidation mechanisms into three modes: diffusion oxidation (<2 km/s), anisotropic oxidation (2-5 km/s), and microexplosion oxidation (>5 km/s). The first mode corresponds to the typical isotropic mechanism of nanoparticles. In the second mode, shock induces an anisotropic temperature gradient via molecular collisions and triggers the ignition in one side. Further increasing the flow velocity, severe dispersion of small AlxOy clusters is identified as a microexplosion event. These three oxidation modes dedicate to interpret the effect of translational energy on surface reactions and supplement the current oxidation theory.
引用
收藏
页码:13206 / 13214
页数:9
相关论文
共 48 条
  • [1] Modelling the increase in anisotropic reaction rates in metal nanoparticle oxidation using carbon nanotubes as thermal conduits
    Abrahamson, Joel T.
    Nair, Nitish
    Strano, Michael S.
    [J]. NANOTECHNOLOGY, 2008, 19 (19)
  • [2] Reflected shock ignition and combustion of aluminum and nanocomposite thermite powders
    Bazyn, T.
    Glumac, N.
    Krier, H.
    Ward, T. S.
    Schoenitz, M.
    Dreizin, E. L.
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 2007, 179 (03) : 457 - 476
  • [3] Numerical simulation of single aluminum particle combustion (review)
    Beckstead, MW
    Liang, Y
    Pudduppakkam, KV
    [J]. COMBUSTION EXPLOSION AND SHOCK WAVES, 2005, 41 (06) : 622 - 638
  • [4] Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry
    Chen, Yi
    Guildenbecher, Daniel R.
    Hoffmeister, Kathryn N. G.
    Cooper, Marcia A.
    Stauffacher, Howard L.
    Oliver, Michael S.
    Washburn, Ephraim B.
    [J]. COMBUSTION AND FLAME, 2017, 182 : 225 - 237
  • [5] Reaction Mechanism of the Aluminum Nanoparticle: Physicochemical Reaction and Heat/Mass Transfer
    Chu, Qingzhao
    Shi, Baolu
    Liao, Lijuan
    Zou, Xiangrui
    Luo, Kai H.
    Wang, Ningfei
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (06) : 3886 - 3894
  • [6] Ignition and Oxidation of Core-Shell Al/Al2O3 Nanoparticles in an Oxygen Atmosphere: Insights from Molecular Dynamics Simulation
    Chu, Qugzhao
    Shi, Baolu
    Liao, Lijuan
    Luo, Kai H.
    Wang, Ningfei
    Huang, Chenguang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (51) : 29620 - 29627
  • [7] Fundamental Study on Mechanisms of Thermal Decomposition and Oxidation of Aluminum Hydride
    Feng, Muye
    Li, Heping
    Mao, Qian
    Luo, Kai H.
    Hellier, Paul
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (40) : 24436 - 24445
  • [8] Influence of oxidizing conditions on the condensation of aluminum oxide nanoparticles: Insights from atomistic modeling
    Forster, Georg Daniel
    Calvo, Florent
    [J]. APPLIED SURFACE SCIENCE, 2020, 512
  • [9] Stress-assist chemical reactions front propagation in deformable solids
    Freidin, A. B.
    Vilchevskaya, E. N.
    Korolev, I. K.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2014, 83 : 57 - 75
  • [10] Frisch M. J., 2009, GAUSSIAN 09 REV D 01