Control of tunneling gap between nanocrystals by introduction of solution processed interfacial layers for wearable sensor applications

被引:8
作者
Hossain, Md Ashraf [1 ]
Jeon, Sanghyun [1 ]
Ahn, Junhyuk [1 ]
Joh, Hyungmok [1 ]
Bang, Junsung [1 ]
Oh, Soong Ju [1 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Silver nanocrystal; Tunneling gap; SiO2 interfacial layers; Solution process; Strain sensor; STRAIN SENSORS; CHARGE-TRANSPORT; RECENT PROGRESS; MONOLAYERS; COATINGS; GROWTH;
D O I
10.1016/j.jiec.2019.01.027
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we introduce a strategy to introduce solution-processed interfacial layers in nanocrystal (NC) thin films to fabricate high-performance strain sensors. SiO2 interfacial layers are chemically introduced in ligand-exchanged Ag NC thin films to increase the tunneling gap or inter-particle distance between each Ag NC. In this way, the charge-transport mechanism is manipulated, leading to unique electromechanical properties with a high gauge factor. All solution-processed strain gauge sensors with high stability, durability, and sensitivity are fabricated. The sensor successfully measured delicate movements such as finger motions, demonstrating its possible application in electronic skin. (C) 2019 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:214 / 220
页数:7
相关论文
共 42 条
[1]   Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J].
Amjadi, Morteza ;
Kyung, Ki-Uk ;
Park, Inkyu ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) :1678-1698
[2]   Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite [J].
Amjadi, Morteza ;
Pichitpajongkit, Aekachan ;
Lee, Sangjun ;
Ryu, Seunghwa ;
Park, Inkyu .
ACS NANO, 2014, 8 (05) :5154-5163
[3]   Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene-Rubber Composites [J].
Boland, Conor S. ;
Khan, Umar ;
Backes, Claudia ;
O'Neill, Arlene ;
McCauley, Joe ;
Duane, Shane ;
Shanker, Ravi ;
Liu, Yang ;
Jurewicz, Izabela ;
Dalton, Alan B. ;
Coleman, Jonathan N. .
ACS NANO, 2014, 8 (09) :8819-8830
[4]  
Boles MA, 2016, NAT MATER, V15, P141, DOI [10.1038/NMAT4526, 10.1038/nmat4526]
[5]   Silver nanoparticles capped by oleylamine: Formation, growth, and self-organization [J].
Chen, Meng ;
Feng, Yong-Gang ;
Wang, Xia ;
Li, Ting-Cheng ;
Zhang, Jun-Yan ;
Qian, Dong-Jin .
LANGMUIR, 2007, 23 (10) :5296-5304
[6]   Exploiting the colloidal nanocrystal library to construct electronic devices [J].
Choi, Ji-Hyuk ;
Wang, Han ;
Oh, Soong Ju ;
Paik, Taejong ;
Jo, Pil Sung ;
Sung, Jinwoo ;
Ye, Xingchen ;
Zhao, Tianshuo ;
Diroll, Benjamin T. ;
Murray, Christopher B. ;
Kagan, Cherie R. .
SCIENCE, 2016, 352 (6282) :205-208
[7]   Particle size distributions of silver nanoparticles at environmentally relevant conditions [J].
Cumberland, Susan A. ;
Lead, Jamie R. .
JOURNAL OF CHROMATOGRAPHY A, 2009, 1216 (52) :9099-9105
[8]   Air-Stable, Nanostructured Electronic and Plasmonic Materials from Solution-Processable, Silver Nanocrystal Building Blocks [J].
Fafarman, Aaron T. ;
Hong, Sung-Hoon ;
Oh, Soong Ju ;
Caglayan, Humeyra ;
Ye, Xingchen ;
Diroll, Benjamin T. ;
Engheta, Nader ;
Murray, Christopher B. ;
Kagan, Cherie R. .
ACS NANO, 2014, 8 (03) :2746-2754
[9]   Capacitive Soft Strain Sensors via Multicore-Shell Fiber Printing [J].
Frutiger, Andreas ;
Muth, Joseph T. ;
Vogt, Daniel M. ;
Menguec, Yigit ;
Campo, Alexandre ;
Valentine, Alexander D. ;
Walsh, Conor J. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2015, 27 (15) :2440-2446
[10]   Unraveling the Growth Mechanism of Silica Particles in the Stober Method: In Situ Seeded Growth Model [J].
Han, Yandong ;
Lu, Ziyang ;
Teng, Zhaogang ;
Liang, Jinglun ;
Guo, Zilong ;
Wang, Dayang ;
Han, Ming-Yong ;
Yang, Wensheng .
LANGMUIR, 2017, 33 (23) :5879-5890