Global network alignment using multiscale spectral signatures

被引:144
作者
Patro, Rob [1 ,2 ]
Kingsford, Carl [1 ,2 ]
机构
[1] Univ Maryland, Inst Adv Comp Studies, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
PROTEIN-INTERACTION NETWORKS; GENE ONTOLOGY; DATABASE;
D O I
10.1093/bioinformatics/bts592
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Protein interaction networks provide an important system-level view of biological processes. One of the fundamental problems in biological network analysis is the global alignment of a pair of networks, which puts the proteins of one network into correspondence with the proteins of another network in a manner that conserves their interactions while respecting other evidence of their homology. By providing a mapping between the networks of different species, alignments can be used to inform hypotheses about the functions of unannotated proteins, the existence of unobserved interactions, the evolutionary divergence between the two species and the evolution of complexes and pathways. Results: We introduce GHOST, a global pairwise network aligner that uses a novel spectral signature to measure topological similarity between subnetworks. It combines a seed-and-extend global alignment phase with a local search procedure and exceeds state-of-the-art performance on several network alignment tasks. We show that the spectral signature used by GHOST is highly discriminative, whereas the alignments it produces are also robust to experimental noise. When compared with other recent approaches, we find that GHOST is able to recover larger and more biologically significant, shared subnetworks between species.
引用
收藏
页码:3105 / 3114
页数:10
相关论文
共 41 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]  
[Anonymous], 1997, AM MATH SOC, DOI DOI 10.1090/CBMS/092
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]  
Babai L., 1982, PROC 14 ANN ACM S TH, P310, DOI DOI 10.1145/800070.802206
[5]   Systematic identification of functional orthologs based on protein network comparison [J].
Bandyopadhyay, S ;
Sharan, R ;
Ideker, T .
GENOME RESEARCH, 2006, 16 (03) :428-435
[6]   Structural distance and evolutionary relationship of networks [J].
Banerjee, Anirban .
BIOSYSTEMS, 2012, 107 (03) :186-196
[7]  
Chindelevitch L, 2010, BIOCOMPUT-PAC SYM, P123
[8]   Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae [J].
Collins, Sean R. ;
Kemmeren, Patrick ;
Zhao, Xue-Chu ;
Greenblatt, Jack F. ;
Spencer, Forrest ;
Holstege, Frank C. P. ;
Weissman, Jonathan S. ;
Krogan, Nevan J. .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (03) :439-450
[9]   A Tensor-Based Algorithm for High-Order Graph Matching [J].
Duchenne, Olivier ;
Bach, Francis ;
Kweon, In-So ;
Ponce, Jean .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (12) :2383-2395
[10]  
El-Kebir M, 2011, LECT N BIOINFORMAT, V7036, P225, DOI 10.1007/978-3-642-24855-9_20