Minimum-link paths revisited

被引:13
|
作者
Mitchell, Joseph S. B. [1 ]
Polishchuk, Valentin [2 ,3 ]
Sysikaski, Mikko [2 ]
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY USA
[2] Univ Helsinki, Dept Comp Sci, Helsinki Inst Informat Technol, FIN-00014 Helsinki, Finland
[3] Linkoping Univ, ITN, Norrkoping, Sweden
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2014年 / 47卷 / 06期
基金
美国国家科学基金会;
关键词
Path planning; Link distance; Approximations; 3SUM-hardness; RECTILINEAR OBSTACLES; LINEAR-TIME; ALGORITHMS; ORIENTATIONS; POLYGON; SEARCH; BENDS; RAY;
D O I
10.1016/j.comgeo.2013.12.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A path or a polygonal domain is C-oriented if the orientations of its edges belong to a set of C given orientations; this is a generalization of the notable rectilinear case (C = 2). We study exact and approximation algorithms for minimum-link C-oriented paths and paths with unrestricted orientations, both in C-oriented and in general domains. Our two main algorithms are as follows: A subquadratic-time algorithm with a non-trivial approximation guarantee for general (unrestricted-orientation) minimum-link paths in general domains. An algorithm to find a minimum-link C-oriented path in a C-oriented domain. Our algorithm is simpler and more time-space efficient than the prior algorithm. We also obtain several related results: 3SUM-hardness of determining the link distance with unrestricted orientations (even in a rectilinear domain). An optimal algorithm for finding a minimum-link rectilinear path in a rectilinear domain. The algorithm and its analysis are simpler than the existing ones. An extension of our methods to find a C-oriented minimum-link path in a general (not necessarily C-oriented) domain. A more efficient algorithm to compute a 2-approximate C-oriented minimum-link path. A notion of "robust" paths. We show how minimum-link C-oriented paths approximate the robust paths with unrestricted orientations to within an additive error of 1. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:651 / 667
页数:17
相关论文
共 50 条
  • [1] APPROXIMATING POLYGONS AND SUBDIVISIONS WITH MINIMUM-LINK PATHS
    Guibas, Leonidas J.
    Hershberger, John E.
    Mitchell, Joseph S. B.
    Snoeyink, Jack Scott
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1993, 3 (04) : 383 - 415
  • [2] MINIMUM-LINK PATHS AMONG OBSTACLES IN THE PLANE
    MITCHELL, JSB
    ROTE, G
    WOEGINGER, G
    ALGORITHMICA, 1992, 8 (5-6) : 431 - 459
  • [3] Faster Algorithms for Minimum-Link Paths with Restricted Orientations
    Polishchuk, Valentin
    Sysikaski, Mikko
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 655 - 666
  • [4] Minimum-link shortest paths for polygons amidst rectilinear obstacles
    Kim, Mincheol
    Ahn, Hee-Kap
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 103
  • [5] An Optimal Algorithm for Minimum-Link Rectilinear Paths in Triangulated Rectilinear Domains
    Joseph S. B. Mitchell
    Valentin Polishchuk
    Mikko Sysikaski
    Haitao Wang
    Algorithmica, 2019, 81 : 289 - 316
  • [6] An Optimal Algorithm for Minimum-Link Rectilinear Paths in Triangulated Rectilinear Domains
    Mitchell, Joseph S. B.
    Polishchuk, Valentin
    Sysikaski, Mikko
    Wang, Haitao
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 947 - 959
  • [7] An Optimal Algorithm for Minimum-Link Rectilinear Paths in Triangulated Rectilinear Domains
    Mitchell, Joseph S. B.
    Polishchuk, Valentin
    Sysikaski, Mikko
    Wang, Haitao
    ALGORITHMICA, 2019, 81 (01) : 289 - 316
  • [8] MINIMUM-LINK C-ORIENTED PATHS: SINGLE-SOURCE QUERIES
    Adegeest, John
    Overmars, Mark
    Snoeyink, Jack
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1994, 4 (01) : 39 - 51
  • [9] Minimum-link watchman tours
    Arkin, EM
    Mitchell, JSB
    Piatko, CD
    INFORMATION PROCESSING LETTERS, 2003, 86 (04) : 203 - 207
  • [10] SCALABLE EXACT VISUALIZATION OF ISOCONTOURS IN ROAD NETWORKS VIA MINIMUM-LINK PATHS
    Baum, Moritz
    Blaesius, Thomas
    Gemsa, Andreas
    Rutter, Ignaz
    Wegner, Franziska
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2018, 9 (01) : 27 - 73