A geometrical version of Hardy's inequality

被引:66
作者
Hoffmann-Ostenhof, M [1 ]
Hoffmann-Ostenhof, T
Laptev, A
机构
[1] Univ Vienna, Inst Math, A-1090 Vienna, Austria
[2] Univ Vienna, Inst Theoret Chem, A-1090 Vienna, Austria
[3] Int Erwin Schrodinger Inst Math Phys, Vienna, Austria
[4] KTH, Dept Math, S-10044 Stockholm, Sweden
基金
奥地利科学基金会;
关键词
D O I
10.1006/jfan.2001.3859
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a version of Hardy's type inequality in a domain Omega subset of R-n which involves the distance to the boundary and the volume of Omega. In particular, we obtain a result which gives a positive answer to a question asked by H. Brezis and M. Marcus. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:539 / 548
页数:10
相关论文
共 10 条
[1]  
BARBATIS G, 2000, UNIFIED APPROACH IMP
[2]   Extremal functions for Hardy's inequality with weight [J].
Brezis, H ;
Marcus, M ;
Shafrir, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 171 (01) :177-191
[3]  
Brezis H., 1997, ANN SC NORM PISA, V25, P217
[4]  
Davies E.B., 1995, SPECTRAL THEORY DIFF, V42
[5]  
DAVIES EB, OPER THEORY ADV APPL, V110, P55
[6]   On the best constant for Hardy's inequality in Rn [J].
Marcus, M ;
Mizel, VJ ;
Pinchover, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (08) :3237-3255
[7]  
MARKUS M, 1997, T AM MATH SOC, V28, P1601
[8]   The best possible constant in generalized Hardy's inequality for convex domain in R(n) [J].
Matskewich, T ;
Sobolevskii, PE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (09) :1601-1610
[9]  
MAZYA VG, 1985, SPRINGER SERIES SOVI
[10]  
Opic B., 1990, Pitman Research Notes in Mathematics Series, V219