Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle

被引:46
作者
Discart, V. [1 ]
Bilad, M. R. [1 ]
Marbelia, L. [1 ]
Vankelecom, I. F. J. [1 ]
机构
[1] Katholieke Univ Leuven, Ctr Surface Chem & Catalysis, Fac Biosci Engn, B-3001 Louvain, Belgium
关键词
Membrane photobioreactor; Algae harvesting; Transparent exopolymeric particles; Microfiltration; C; vulgaris; MICROALGAE CULTIVATION; GROWTH-MEDIUM; PARTICLES; CELL; PHYTOPLANKTON; BIOFUELS; ALGAE;
D O I
10.1016/j.biortech.2013.11.019
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
A membrane photobioreactor (MPBR) is a proven and very useful concept in which microalgae can be simultaneously cultivated and pre-harvested. However, the behavior with respect to accumulation of algogenic organic matter, including transparent exopolymeric particles (TEPs), counter ions and unassimilated nutrients due to the recycling of the medium is still unclear, even though the understanding of this behavior is essential for the optimization of microalgae processing. Therefore, the dynamics of these compounds, especially TEPs, during coupled cultivation and harvesting of Chlorella vulgaris in an MPBR with permeate recycle are addressed in this study. Results show that TEPs are secreted during algae cell growth, and that their presence is thus inevitable. In the system with permeate recycle, substances such as counter ions and unassimilated nutrients get accumulated in the system. This was proven to limit the algae growth, together with the occurrence of bioflocculation due to an increasing broth pH. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:321 / 328
页数:8
相关论文
共 35 条
[1]   The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells [J].
Alyabyev, A. Ju. ;
Loseva, N. L. ;
Gordon, L. Kh. ;
Andreyeva, I. N. ;
Rachimova, G. G. ;
Tribunskih, V. I. ;
Ponomareva, A. A. ;
Kemp, R. B. .
THERMOCHIMICA ACTA, 2007, 458 (1-2) :65-70
[2]  
Bilad M. R., 2013, BIORESOUR T IN PRESS
[3]   Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process [J].
Biller, P. ;
Ross, A. B. ;
Skill, S. C. ;
Lea-Langton, A. ;
Balasundaram, B. ;
Hall, C. ;
Riley, R. ;
Llewellyn, C. A. .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2012, 1 (01) :70-76
[4]   Growth Inhibition of Monodus subterraneus by Free Fatty Acids [J].
Bosma, R. ;
Miazek, K. ;
Willemsen, S. M. ;
Vermue, M. H. ;
Wijffels, R. H. .
BIOTECHNOLOGY AND BIOENGINEERING, 2008, 101 (05) :1108-1114
[5]   Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts [J].
Christenson, Logan ;
Sims, Ronald .
BIOTECHNOLOGY ADVANCES, 2011, 29 (06) :686-702
[6]   Role of transparent exopolymeric particles in membrane fouling: Chlorella vulgaris broth filtration [J].
Discart, V. ;
Bilad, M. R. ;
Vandamme, D. ;
Foubert, I. ;
Muylaert, K. ;
Vankelecom, I. F. J. .
BIORESOURCE TECHNOLOGY, 2013, 129 :18-25
[7]  
Discart V., 2013, CRIT REV EN IN PRESS
[8]   Membrane fouling in membrane bioreactors-Characterisation, contradictions, cause and cures [J].
Drews, Anja .
JOURNAL OF MEMBRANE SCIENCE, 2010, 363 (1-2) :1-28
[9]   A rapid spectrophotometric method for the determination of transparent exopolymer particles (TEP) in freshwater [J].
Fatibello, SHSA ;
Vieira, AAH ;
Fatibello, O .
TALANTA, 2004, 62 (01) :81-85
[10]   Placing microalgae on the biofuels priority list: a review of the technological challenges [J].
Greenwell, H. C. ;
Laurens, L. M. L. ;
Shields, R. J. ;
Lovitt, R. W. ;
Flynn, K. J. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2010, 7 (46) :703-726