Consistency in Monte Carlo Uncertainty Analyses*

被引:12
作者
Jamroz, Benjamin F. [1 ]
Williams, Dylan F. [1 ]
机构
[1] NIST, 325 Broadway, Boulder, CO 80303 USA
关键词
the monte carlo method; uncertainty analysis; distributed computing; EFFICIENT;
D O I
10.1088/1681-7575/aba5aa
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The Monte Carlo method is an established tool that is often used to evaluate the uncertainty of measurements. For computationally challenging problems, Monte Carlo uncertainty analyses are typically distributed across multiple processes on a multi-node cluster or supercomputer. Additionally, results from previous uncertainty analyses are often used in further analyses in a sequential manner. To accurately capture the uncertainty of the output quantity of interest, Monte Carlo sample distributions must be treated consistently, using reproducible replicates, throughout the entire analysis. We highlight the need for and importance of consistent Monte Carlo methods in distributed and sequential uncertainty analyses, recommend an implementation to achieve the needed consistency in these complicated analyses, and discuss methods to evaluate the accuracy of implementations.
引用
收藏
页数:10
相关论文
共 26 条
  • [1] AGBO IO, 2019, INT TEST CONF P
  • [2] [Anonymous], 1986, Non-Uniform Random Variate Generation
  • [3] [Anonymous], 2012, 1804 FIPS NAT I STAN
  • [4] Bassham L.E., 2010, TECH REP
  • [5] DESIGN AND ANALYSIS OF PARALLEL MONTE-CARLO ALGORITHMS
    BHAVSAR, VC
    ISAAC, JR
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (01): : S73 - S95
  • [6] A NOTE ON THE GENERATION OF RANDOM NORMAL DEVIATES
    BOX, GEP
    MULLER, ME
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (02): : 610 - 611
  • [7] Brown R.G., Dieharder: a random number test suite
  • [8] A Monte Carlo method for uncertainty evaluation implemented on a distributed computing system
    Esward, T. J.
    de Ginestous, A.
    Harris, P. M.
    Hill, I. D.
    Salim, S. G. R.
    Smith, I. M.
    Wichmann, B. A.
    Winkler, R.
    Woolliams, E. R.
    [J]. METROLOGIA, 2007, 44 (05) : 319 - 326
  • [9] Hammersley J.M., 1964, MONTE CARLO METHODS, DOI DOI 10.1007/978-94-009-5819-7
  • [10] Efficient jump ahead for F2-linear random number generators
    Haramoto, Hiroshi
    Matsumoto, Makoto
    Nishimura, Takuji
    Panneton, Francois
    L'Ecuyer, Pierre
    [J]. INFORMS JOURNAL ON COMPUTING, 2008, 20 (03) : 385 - 390