STOCHASTIC PERRON'S METHOD FOR HAMILTON-JACOBI-BELLMAN EQUATIONS

被引:43
作者
Bayraktar, Erhan [1 ]
Sirbu, Mihai [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
stochastic Perron's method; viscosity solutions; nonsmooth verification; comparison principle; SUPER-REPLICATION; VERIFICATION;
D O I
10.1137/12090352X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that the value function of a stochastic control problem is the unique solution of the associated Hamilton-Jacobi-Bellman equation, completely avoiding the proof of the so-called dynamic programming principle (DPP). Using the stochastic Perron's method we construct a supersolution lying below the value function and a subsolution dominating it. A comparison argument easily closes the proof. The program has the precise meaning of verification for viscosity solutions, obtaining the DPP as a conclusion. It also immediately follows that the weak and strong formulations of the stochastic control problem have the same value. Using this method we also capture the possible face-lifting phenomenon in a straightforward manner.
引用
收藏
页码:4274 / 4294
页数:21
相关论文
共 21 条
[1]  
[Anonymous], P AM MATH S IN PRESS
[2]  
Bayraktar E, 2012, P AM MATH SOC, V140, P3645
[3]   WEAK DYNAMIC PROGRAMMING PRINCIPLE FOR VISCOSITY SOLUTIONS [J].
Bouchard, Bruno ;
Touzi, Nizar .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (03) :948-962
[4]   Optimal replication of contingent claims under portfolio constraints [J].
Broadie, M ;
Cvitanic, J ;
Soner, HM .
REVIEW OF FINANCIAL STUDIES, 1998, 11 (01) :59-79
[5]  
Claisse J., 2013, NOTE SOLUTIONS CONTR
[6]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[7]   Super-replication in stochastic volatility models under portfolio constraints [J].
Cvitanic, J ;
Pham, H ;
Touzi, N .
JOURNAL OF APPLIED PROBABILITY, 1999, 36 (02) :523-545
[8]  
Diehl J., 2011, ARXIV11025774
[9]  
Ekren I., 2012, ARXIV12100006MATHPR
[10]  
EKREN I., ANN PROBAB IN PRESS