Generalized Peaceman-Rachford splitting method for multiple-block separable convex programming with applications to robust PCA

被引:37
作者
Sun, Min [1 ]
Wang, Yiju [2 ]
Liu, Jing [3 ]
机构
[1] Zaozhuang Univ, Sch Math & Stat, Zaozhuang 277160, Shandong, Peoples R China
[2] Qufu Normal Univ, Sch Management, Rizhao 276826, Peoples R China
[3] Zhejiang Univ Finance & Econ, Sch Math & Stat, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Peaceman-Rachford splitting method; Convex programming; Robust PCA;
D O I
10.1007/s10092-016-0177-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Peaceman-Rachford splitting method (PRSM) is an efficient approach for two-block separable convex programming. In this paper we extend this method to the general case where the objective function consists of the sum of multiple convex functions without coupled variables, and present a generalized PRSM. Theoretically, we prove global convergence of the new method and establish the worst-case convergence rate measured by the iteration complexity in the ergodic sense for the new method. Numerically, its efficiency is illustrated by synthetic data about the robust principal component analysis (PCA) model with noisy and incomplete information.
引用
收藏
页码:77 / 94
页数:18
相关论文
共 17 条
[1]  
[Anonymous], 2003, SPRINGER SERIES OPER, DOI DOI 10.1007/978-0-387-21815-16
[2]  
[Anonymous], 2004, WILEY SER PROB STAT
[3]  
Cai JF, 2008, INVERSE PROBL IMAG, V2, P187
[4]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[5]  
Duchi J, 2009, J MACH LEARN RES, V10, P2899
[6]  
Fazel M., 1998, TECH REP
[7]  
Gabay D., 1976, COMPUT MATH APPL, V2, P16, DOI DOI 10.1016/0898-1221(76)90003-1
[8]   LOCAL LINEAR CONVERGENCE OF THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR QUADRATIC PROGRAMS [J].
Han, Deren ;
Yuan, Xiaoming .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) :3446-3457
[9]  
He B.S., 2015, J SCI COMPU IN PRESS
[10]   A STRICTLY CONTRACTIVE PEACEMAN-RACHFORD SPLITTING METHOD FOR CONVEX PROGRAMMING [J].
He, Bingsheng ;
Liu, Han ;
Wang, Zhaoran ;
Yuan, Xiaoming .
SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (03) :1011-1040