The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space

被引:0
作者
Nakamura, M [1 ]
Ozawa, T [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 060, Japan
来源
ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE | 1999年 / 71卷 / 02期
关键词
nonlinear wave equations; Cauchy problem; Strichartz' estimate; minimal regularity; homogeneous Besov estimates;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space (H) over dot (mu)(R-n), where n greater than or equal to 2 and 0 less than or equal to mu < n/2 using the generalized Strichartz estimates given by J. Ginibre and G. Velo (1995). (C) Elsevier, Paris.
引用
收藏
页码:199 / 215
页数:17
相关论文
共 50 条
[41]   Asymptotic expansions of solutions of the Cauchy problem for nonlinear parabolic equations [J].
Kazuhiro Ishige ;
Tatsuki Kawakami .
Journal d'Analyse Mathématique, 2013, 121 :317-351
[42]   Sharp weights in the Cauchy problem for nonlinear Schrodinger equations with potential [J].
Carles, Remi .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04) :2087-2094
[43]   A variational approach to the Cauchy problem for nonlinear elliptic differential equations [J].
Ly, I. ;
Tarkhanov, N. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2009, 17 (06) :595-610
[44]   The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev spaces of negative order [J].
Molinet, L ;
Ribaud, F .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (04) :1745-1776
[45]   Uniqueness and stability of solutions for Cauchy problem of nonlinear diffusion equations [J].
Zhao, JN ;
Lei, PD .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (09) :917-925
[46]   Cauchy problem of nonlinear Klein–Gordon equations with general nonlinearities [J].
Yongbing Luo ;
Md Salik Ahmed .
Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 :959-973
[47]   Uniqueness and stability of solutions for Cauchy problem of nonlinear diffusion equations [J].
Junning Zhao ;
Peidong Lei .
Science in China Series A: Mathematics, 1997, 40 :917-925
[48]   The Cauchy problem for properly hyperbolic equations in one space variable [J].
Spagnolo, Sergio ;
Taglialatela, Giovanni .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2022, 19 (03) :439-466
[49]   Global logarithmic stability of a Cauchy problem for anisotropic wave equations [J].
Bellassoued, Mourad ;
Choulli, Mourad .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (03)
[50]   The Cauchy problem for linear inhomogeneous wave equations with variable coefficients [J].
Liu, Kai ;
Shi, Wei .
APPLIED MATHEMATICS LETTERS, 2018, 86 :215-221