The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space

被引:0
作者
Nakamura, M [1 ]
Ozawa, T [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 060, Japan
来源
ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE | 1999年 / 71卷 / 02期
关键词
nonlinear wave equations; Cauchy problem; Strichartz' estimate; minimal regularity; homogeneous Besov estimates;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space (H) over dot (mu)(R-n), where n greater than or equal to 2 and 0 less than or equal to mu < n/2 using the generalized Strichartz estimates given by J. Ginibre and G. Velo (1995). (C) Elsevier, Paris.
引用
收藏
页码:199 / 215
页数:17
相关论文
共 50 条
[21]   Cauchy problem for quasi-linear wave equations with nonlinear damping and source terms [J].
Yang, ZJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (01) :218-243
[22]   The Cauchy problem for the seventh-order dispersive equation in Sobolev space [J].
Hongjun Wang ;
Yan Zheng .
Boundary Value Problems, 2014
[23]   The Cauchy problem for the seventh-order dispersive equation in Sobolev space [J].
Wang, Hongjun ;
Zheng, Yan .
BOUNDARY VALUE PROBLEMS, 2014,
[24]   CAUCHY PROBLEM OF NONLINEAR SCHRODINGER EQUATION WITH INITIAL DATA IN SOBOLEV SPACE Ws,p FOR p &lt; 2 [J].
Zhou, Yi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (09) :4683-4694
[25]   Stochastic nonlinear wave equations in local Sobolev spaces [J].
Ondrejat, Martin .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 :1041-1091
[26]   Cauchy problem for nonlinear parabolic equations with a gradient term [J].
Shang, Haifeng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (08) :2801-2825
[27]   On the Cauchy problem for nonlinear parabolic equations with variable density [J].
Fabio Punzo .
Journal of Evolution Equations, 2009, 9 :429-447
[28]   Cauchy problem for the nonlinear Schrodinger-IMBq equations [J].
Wang, SB ;
Chen, GW .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2006, 6 (01) :203-214
[29]   Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow [J].
Yang, ZJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 313 (01) :197-217
[30]   The Solvability of the Cauchy Problem for a Class of Sobolev-Type Equations in Tempered Distributions [J].
A. L. Pavlov .
Siberian Mathematical Journal, 2022, 63 :940-955