Lie bialgebra quantizations of the oscillator algebra and their universal R-matrices

被引:26
作者
Ballesteros, A
Herranz, FJ
机构
[1] Departamento de Física, Universidad de Burgos, E-09001, Burgos, Pza Misael Bañuelos
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 15期
关键词
D O I
10.1088/0305-4470/29/15/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
All coboundary Lie bialgebras and their corresponding Poisson-Lie structures are constructed for the oscillator algebra generated by {N, A(+), A(-), M}. Quantum oscillator algebras are derived from these bialgebras by using the Lyakhovsky and Mudrov formalism and, for some cases, quantizations at both algebra and group levels are obtained, including their universal R-matrices.
引用
收藏
页码:4307 / 4320
页数:14
相关论文
共 19 条
[1]   MANY-BODY PROBLEMS WITH COMPOSITE-PARTICLES AND Q-HEISENBERG ALGEBRAS [J].
AVANCINI, SS ;
KREIN, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (03) :685-691
[2]   Non-standard quantum (1+1) Poincare group: A T-matrix approach [J].
Ballesteros, A ;
Herranz, FJ ;
delOlmo, MA ;
Perena, CM ;
Santander, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (24) :7113-7125
[3]   LIE BIALGEBRA CONTRACTIONS AND QUANTUM DEFORMATIONS OF QUASI-ORTHOGONAL ALGEBRAS [J].
BALLESTEROS, A ;
GROMOV, NA ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (10) :5916-5937
[4]   NONSTANDARD QUANTUM SO(2,2) AND BEYOND [J].
BALLESTEROS, A ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (04) :941-955
[5]   AN R-MATRIX APPROACH TO THE QUANTIZATION OF THE EUCLIDEAN GROUP E(2) [J].
BALLESTEROS, A ;
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (24) :7495-7501
[6]   DEFORMED OSCILLATOR ALGEBRAS FOR 2-DIMENSIONAL QUANTUM SUPERINTEGRABLE SYSTEMS [J].
BONATSOS, D ;
DASKALOYANNIS, C ;
KOKKOTAS, K .
PHYSICAL REVIEW A, 1994, 50 (05) :3700-3709
[7]   QUANTUM-ALGEBRAIC DESCRIPTION OF QUANTUM SUPERINTEGRABLE SYSTEMS IN 2 DIMENSIONS [J].
BONATSOS, D ;
DASKALOYANNIS, C ;
KOKKOTAS, K .
PHYSICAL REVIEW A, 1993, 48 (05) :R3407-R3410
[8]   THE QUANTUM HEISENBERG-GROUP H(1)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1155-1158
[9]   IDENTICAL PARTICLES AND PERMUTATION GROUP [J].
CELEGHINI, E ;
RASETTI, M ;
VITIELLO, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (08) :L239-L244
[10]   MORE ON THE Q-OSCILLATOR ALGEBRA AND Q-ORTHOGONAL POLYNOMIALS [J].
FLOREANINI, R ;
LETOURNEUX, J ;
VINET, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (10) :L287-L293