ON THE EXISTENCE OF NONINNER AUTOMORPHISMS OF ORDER TWO IN FINITE 2-GROUPS

被引:17
|
作者
Jamali, A. R. [1 ]
Viseh, M. [1 ]
机构
[1] Tarbiat Moallem Univ, Fac Math Sci & Comp, Tehran 15618, Iran
关键词
finite p-groups; noninner automorphism; powerful p-groups; cyclic commutator subgroup; P-GROUPS;
D O I
10.1017/S0004972712000706
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that every nonabelian finite 2-group with a cyclic commutator subgroup has a noninner automorphism of order two fixing either Phi(G) or Z(G) elementwise. This, together with a result of Peter Schmid on regular p-groups, extends our result to the class of nonabelian finite p-groups with a cyclic commutator subgroup.
引用
收藏
页码:278 / 287
页数:10
相关论文
共 50 条