ON THE EXISTENCE OF NONINNER AUTOMORPHISMS OF ORDER TWO IN FINITE 2-GROUPS

被引:17
作者
Jamali, A. R. [1 ]
Viseh, M. [1 ]
机构
[1] Tarbiat Moallem Univ, Fac Math Sci & Comp, Tehran 15618, Iran
关键词
finite p-groups; noninner automorphism; powerful p-groups; cyclic commutator subgroup; P-GROUPS;
D O I
10.1017/S0004972712000706
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that every nonabelian finite 2-group with a cyclic commutator subgroup has a noninner automorphism of order two fixing either Phi(G) or Z(G) elementwise. This, together with a result of Peter Schmid on regular p-groups, extends our result to the class of nonabelian finite p-groups with a cyclic commutator subgroup.
引用
收藏
页码:278 / 287
页数:10
相关论文
共 13 条
[1]   Finite p-groups of class 2 have noninner automorphisms of order p [J].
Abdollahi, A. .
JOURNAL OF ALGEBRA, 2007, 312 (02) :876-879
[2]   Powerful p-groups have non-inner automorphisms of order p and some cohomology [J].
Abdollahi, Alireza .
JOURNAL OF ALGEBRA, 2010, 323 (03) :779-789
[3]  
Berkovich Y, 2008, DEGRUYTER EXPOS MATH, V46, P1, DOI 10.1515/9783110208221
[4]   ENDOMORPHISMS OF 2-GENERATED METABELIAN-GROUPS THAT INDUCE THE IDENTITY MODULO THE DERIVED SUBGROUP [J].
CARANTI, A ;
SCOPPOLA, CM .
ARCHIV DER MATHEMATIK, 1991, 56 (03) :218-227
[5]   ON FINITE P-GROUPS WITH CYCLIC COMMUTATOR SUBGROUP [J].
CHENG, Y .
ARCHIV DER MATHEMATIK, 1982, 39 (04) :295-298
[6]   Noninner automorphisms of order p of finite p-groups [J].
Deaconescu, M ;
Silberberg, G .
JOURNAL OF ALGEBRA, 2002, 250 (01) :283-287
[7]  
Finogenov A., 1995, ALGEBR LOG+, V34, P125
[8]   NICHTABELSCHE P-GRUPPEN BESITZEN AUSSERE P-AUTOMORPHISMEN [J].
GASCHUTZ, W .
JOURNAL OF ALGEBRA, 1966, 4 (01) :1-&
[9]  
KURZWEIL H, 2004, UNIVERSITEX, P64, DOI 10.1007/b97433
[10]  
LIEBECK H, 1965, J LONDON MATH SOC, V40, P268