Principal component analysis of spectral line data: analytic formulation

被引:25
|
作者
Brunt, C. M. [1 ]
Heyer, M. H. [2 ]
机构
[1] Univ Exeter, Sch Phys, Exeter, Devon, England
[2] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA
基金
英国科学技术设施理事会;
关键词
turbulence; methods: statistical; ISM: clouds; ISM: kinematics and dynamics; TAURUS MOLECULAR CLOUD; INTERSTELLAR TURBULENCE; OUTER GALAXY; UNIVERSALITY;
D O I
10.1093/mnras/stt707
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Principal component analysis is a powerful statistical system to investigate the structure and dynamics of the molecular interstellar medium, with particular emphasis on the study of turbulence, as revealed by spectroscopic imaging of molecular line emission. To date, the method to retrieve the power-law index of the velocity structure function or power spectrum has relied on an empirical calibration and testing with model turbulent velocity fields, while lacking a firm theoretical basis. In this paper, we present an analytic formulation that reveals the detailed mechanics of the method and confirms previous empirical calibrations of its recovery of the scale dependence of turbulent velocity fluctuations.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 50 条
  • [1] Spectral principal component analysis of dynamic process data
    Thornhill, NF
    Shah, SL
    Huang, B
    Vishnubhotla, A
    CONTROL ENGINEERING PRACTICE, 2002, 10 (08) : 833 - 846
  • [2] Principal component spectral analysis
    Guo, Hao
    Marfurt, Kurt J.
    Liu, Jianlei
    GEOPHYSICS, 2009, 74 (04) : P35 - P43
  • [3] Application of Principal Component Analysis to Lubricating Oil Spectral Data
    Tian, Hongxiang
    Liu, Tao
    2009 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT, INNOVATION MANAGEMENT AND INDUSTRIAL ENGINEERING, VOL 1, PROCEEDINGS, 2009, : 286 - 289
  • [4] Spitzer spectral line mapping of supernova remnants.: I.: Basic data and principal component analysis
    Neufeld, David A.
    Hollenbach, David J.
    Kaufman, Michael J.
    Snell, Ronald L.
    Melnick, Gary J.
    Bergin, Edwin A.
    Sonnentrucker, Paule
    ASTROPHYSICAL JOURNAL, 2007, 664 (02): : 890 - 908
  • [5] Transform principal component analysis of spectral images
    Bochko, H
    Jaaskelainen, T
    Parkkinen, J
    CGIV 2004: SECOND EUROPEAN CONFERENCE ON COLOR IN GRAPHICS, IMAGING, AND VISION - CONFERENCE PROCEEDINGS, 2004, : 120 - 124
  • [6] NMR spectral quantitation by principal component analysis
    Stoyanova, R
    Brown, TR
    NMR IN BIOMEDICINE, 2001, 14 (04) : 271 - 277
  • [7] Spectral simulation study on the influence of the principal component analysis step on principal component regression
    Hasegawa, T
    APPLIED SPECTROSCOPY, 2006, 60 (01) : 95 - 98
  • [8] Principal component analysis and neural networks for analysis of complex spectral data from ion backscattering
    Li, MM
    Fan, X
    Tickle, K
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS, 2006, : 228 - +
  • [9] Optimization of on-line principal component analysis
    Schlösser, E
    Saad, D
    Biehl, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (22): : 4061 - 4067
  • [10] The dynamics of on-line principal component analysis
    Biehl, M
    Schlosser, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05): : L97 - L103