THE VOLUME PRODUCT OF CONVEX BODIES WITH MANY HYPERPLANE SYMMETRIES

被引:0
|
作者
Barthe, F. [1 ]
Fradelizi, M. [2 ]
机构
[1] Univ Toulouse 3, Equipe Stat & Probabil, CNRS, IMT,UMR 5219, F-31062 Toulouse 9, France
[2] Univ Paris Est Marne La Vallee, Lab Anal & Math Appl, UMR 8050, F-77454 Marne La Vallee 2, France
关键词
SANTALO INEQUALITY; MAHLER CONJECTURE; LOCAL MINIMALITY; INTEGRALS; ZONOIDS; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mahler's conjecture predicts a sharp lower bound on the volume of the polar of a convex body in terms of its volume. We confirm the conjecture for convex bodies with many hyperplane symmetries in the following sense: their hyperplanes of symmetries have a one-point intersection. Moreover, we obtain improved sharp lower bounds for classes of convex bodies which are invariant by certain reflection groups, namely direct products of the isometry groups of regular polytopes.
引用
收藏
页码:311 / 347
页数:37
相关论文
共 42 条
  • [1] Minimal Volume Product of Three Dimensional Convex Bodies with Various Discrete Symmetries
    Iriyeh, Hiroshi
    Shibata, Masataka
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (03) : 738 - 773
  • [2] Minimal Volume Product of Three Dimensional Convex Bodies with Various Discrete Symmetries
    Hiroshi Iriyeh
    Masataka Shibata
    Discrete & Computational Geometry, 2022, 68 : 738 - 773
  • [3] Convex bodies with minimal volume product in R2 - a new proof
    Lin, Youjiang
    Leng, Gangsong
    DISCRETE MATHEMATICS, 2010, 310 (21) : 3018 - 3025
  • [4] ON THE VOLUME PRODUCT OF PLANAR POLAR CONVEX BODIES - LOWER ESTIMATES WITH STABILITY
    Boeroeczky, K. J.
    Makai, E., Jr.
    Meyer, M.
    Reisner, S.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2013, 50 (02) : 159 - 198
  • [5] On the hyperplane conjecture for random convex sets
    Klartag, Bo'az
    Kozma, Gady
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 170 (01) : 253 - 268
  • [6] ORIGIN-SYMMETRIC CONVEX BODIES WITH MINIMAL MAHLER VOLUME IN R2
    Lin, Youjiang
    Leng, Gangsong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) : 129 - 137
  • [7] LOCAL MINIMALITY OF THE VOLUME-PRODUCT AT THE SIMPLEX
    Kim, Jaegil
    Reisner, Shlomo
    MATHEMATIKA, 2011, 57 (01) : 121 - 134
  • [8] Minimal volume product near Hanner polytopes
    Kim, Jaegil
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) : 2360 - 2402
  • [9] Polytopes of Maximal Volume Product
    Alexander, Matthew
    Fradelizi, Matthieu
    Zvavitch, Artem
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 62 (03) : 583 - 600
  • [10] STABILITY OF THE REVERSE BLASCHKE-SANTALO INEQUALITY FOR UNCONDITIONAL CONVEX BODIES
    Kim, Jaegil
    Zvavitch, Artem
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (04) : 1705 - 1717