Hierarchical composition of the axial filament from spicules of the siliceous sponge Suberites domuncula: from biosilica-synthesizing nanofibrils to structure- and morphology-guiding triangular stems

被引:7
作者
Mueller, Werner E. G. [1 ]
Mugnaioli, Enrico [2 ]
Schroeder, Heinz C. [1 ]
Schlossmacher, Ute [1 ]
Giovine, Marco [3 ]
Kolb, Ute [2 ]
Wang, Xiaohong [1 ,4 ]
机构
[1] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Inst Physiol Chem, ERC Adv Investigator Grant Res Grp, D-55128 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys Chem, D-55099 Mainz, Germany
[3] Univ Genoa, DISTAV, Fac Sci Matemat Fis & Nat, I-16132 Genoa, Italy
[4] Chinese Acad Geol Sci, Natl Res Ctr Geoanal, Beijing 100037, Peoples R China
基金
对外科技合作项目(国际科技项目);
关键词
Nanofibrils; Silicatein; Suberites domuncula; Siliceous sponge; Spicules; Axial filament; SILICATEIN FILAMENTS; MARINE SPONGES; IN-VITRO; PROTEIN; SKELETOGENESIS; DEMOSPONGIAE; EVAGINATION; PRIMMORPHS; EXOCYTOSIS; EXPRESSION;
D O I
10.1007/s00441-012-1519-0
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The major structural and enzymatically active protein in spicules from siliceous sponges, e.g., for Suberites domuncula studied here, is silicatein. Silicatein has been established to be the key enzyme that catalyzes the formation of biosilica, a polymer that represents the inorganic scaffold for the spicule. In the present study, it is shown, by application of high-resolution transmission and scanning transmission electron microscopy that, during the initial phase of spicule synthesis, nanofibrils with a diameter of around 10 nm are formed that comprise bundles of between 10 and 20 nanofibrils. In intracellular vacuoles, silicasomes, the nanofibrils form polar structures with a pointed tip and a blunt end. In a time-dependent manner, these nanofibrillar bundles become embedded into a Si-rich matrix, indicative for the formation of biosilica via silicatein molecules that form the nanofibrils. These biosilicified nanofibrillar bundles become extruded from the intracellular space, where they are located in the silicasomes, to the extracellular environment by an evagination process, during which a cellular protrusion forms the axial canal in the growing spicule. The nanofibrillar bundles condense and progressively form the axial filament that becomes localized in the extracellular space. It is concluded that the silicatein-composing nanofibrils act not only as enzymatic silica bio-condensing platforms but also as a structure-giving guidance for the growing spicule.
引用
收藏
页码:49 / 58
页数:10
相关论文
共 44 条
[1]   Phospholipases C and A2 control lysosome-mediated IL-1β secretion:: Implications for inflammatory processes [J].
Andrei, C ;
Margiocco, P ;
Poggi, A ;
Lotti, LV ;
Torrisi, MR ;
Rubartelli, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (26) :9745-9750
[2]   The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles [J].
Andrei, C ;
Dazzi, C ;
Lotti, L ;
Torrisi, MR ;
Chimini, G ;
Rubartelli, A .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (05) :1463-1475
[3]   The earliest fossil record of the animals and its significance [J].
Budd, Graham E. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1496) :1425-1434
[4]   Histone deacetylase inhibitors prevent exocytosis of interleukin-1β-containing secretory lysosomes:: role of microtubules [J].
Carta, Sonia ;
Tassi, Sara ;
Semino, Claudia ;
Fossati, Gianluca ;
Mascagni, Paolo ;
Dinarello, Charles A. ;
Rubartelli, Anna .
BLOOD, 2006, 108 (05) :1618-1626
[5]   Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro [J].
Cha, JN ;
Shimizu, K ;
Zhou, Y ;
Christiansen, SC ;
Chmelka, BF ;
Stucky, GD ;
Morse, DE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (02) :361-365
[6]   L-929 CELLS UNDER HYPEROSMOTIC CONDITIONS - VOLUME CHANGES [J].
CLEGG, JS .
JOURNAL OF CELLULAR PHYSIOLOGY, 1986, 129 (03) :367-374
[7]   Fiber diffraction study of spicules from marine sponges [J].
Croce, G ;
Frache, A ;
Milanesio, M ;
Viterbo, D ;
Bavestrello, G ;
Benatti, U ;
Giovine, M ;
Amenitsch, H .
MICROSCOPY RESEARCH AND TECHNIQUE, 2003, 62 (04) :378-381
[8]   Structural characterization of siliceous spicules from marine sponges [J].
Croce, G ;
Frache, A ;
Milanesio, M ;
Marchese, L ;
Causà, M ;
Viterbo, D ;
Barbaglia, A ;
Bolis, V ;
Bavestrello, G ;
Cerrano, C ;
Benatti, U ;
Pozzolini, M ;
Giovine, M ;
Amenitsch, H .
BIOPHYSICAL JOURNAL, 2004, 86 (01) :526-534
[9]   A mesoporous pattern created by nature in spicules from Thetya aurantium sponge [J].
Croce, Gianluca ;
Viterbo, Davide ;
Milanesio, Marco ;
Amenitsch, Heinz .
BIOPHYSICAL JOURNAL, 2007, 92 (01) :288-292
[10]   In vivo study of microsclere formation in sponges of the genus Mycale (Demospongiae, Poecilosclerida) [J].
Custódio, MR ;
Hajdu, E ;
Muricy, G .
ZOOMORPHOLOGY, 2002, 121 (04) :203-211