Exploiting Word Semantics to Enrich Character Representations of Chinese Pre-trained Models

被引:6
|
作者
Li, Wenbiao [1 ,2 ]
Sun, Rui [1 ,2 ]
Wu, Yunfang [1 ,3 ]
机构
[1] Peking Univ, MOE Key Lab Computat Linguist, Beijing, Peoples R China
[2] Peking Univ, Sch Software & Microelect, Beijing, Peoples R China
[3] Peking Univ, Sch Comp Sci, Beijing, Peoples R China
来源
NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT I | 2022年 / 13551卷
基金
中国国家自然科学基金;
关键词
Word semantics; Character representation; Pre-trained models;
D O I
10.1007/978-3-031-17120-8_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most of the Chinese pre-trained models adopt characters as basic units for downstream tasks. However, these models ignore the information carried by words and thus lead to the loss of some important semantics. In this paper, we propose a new method to exploit word structure and integrate lexical semantics into character representations of pre-trained models. Specifically, we project a word's embedding into its internal characters' embeddings according to the similarity weight. To strengthen the word boundary information, we mix the representations of the internal characters within a word. After that, we apply a word-tocharacter alignment attention mechanism to emphasize important characters by masking unimportant ones. Moreover, in order to reduce the error propagation caused by word segmentation, we present an ensemble approach to combine segmentation results given by different tokenizers. The experimental results show that our approach achieves superior performance over the basic pre-trained models BERT, BERT-wwm and ERNIE on different Chinese NLP tasks: sentiment classification, sentence pair matching, natural language inference and machine reading comprehension. We make further analysis to prove the effectiveness of each component of our model.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
  • [1] Character-Level Syntax Infusion in Pre-Trained Models for Chinese Semantic Role Labeling
    Wang, Yuxuan
    Lei, Zhilin
    Che, Wanxiang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (12) : 3503 - 3515
  • [2] Character-Level Syntax Infusion in Pre-Trained Models for Chinese Semantic Role Labeling
    Yuxuan Wang
    Zhilin Lei
    Wanxiang Che
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 3503 - 3515
  • [3] Pre-Trained Language Models and Their Applications
    Wang, Haifeng
    Li, Jiwei
    Wu, Hua
    Hovy, Eduard
    Sun, Yu
    ENGINEERING, 2023, 25 : 51 - 65
  • [4] Pre-Trained Models Based Receiver Design With Natural Redundancy for Chinese Characters
    Wang, Zhen-Yu
    Yu, Hong-Yi
    Shen, Cai-Yao
    Zhu, Zhao-Rui
    Shen, Zhi-Xiang
    Du, Jian-Ping
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (10) : 2350 - 2354
  • [5] Pre-trained models: Past, present and future
    Han, Xu
    Zhang, Zhengyan
    Ding, Ning
    Gu, Yuxian
    Liu, Xiao
    Huo, Yuqi
    Qiu, Jiezhong
    Yao, Yuan
    Zhang, Ao
    Zhang, Liang
    Han, Wentao
    Huang, Minlie
    Jin, Qin
    Lan, Yanyan
    Liu, Yang
    Liu, Zhiyuan
    Lu, Zhiwu
    Qiu, Xipeng
    Song, Ruihua
    Tang, Jie
    Wen, Ji-Rong
    Yuan, Jinhui
    Zhao, Wayne Xin
    Zhu, Jun
    AI OPEN, 2021, 2 : 225 - 250
  • [6] Natural Attack for Pre-trained Models of Code
    Yang, Zhou
    Shi, Jieke
    He, Junda
    Lo, David
    2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022), 2022, : 1482 - 1493
  • [7] HinPLMs: Pre-trained Language Models for Hindi
    Huang, Xixuan
    Lin, Nankai
    Li, Kexin
    Wang, Lianxi
    Gan, Suifu
    2021 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2021, : 241 - 246
  • [8] Disambiguating Clinical Abbreviations using Pre-trained Word Embeddings
    Jaber, Areej
    Martinez, Paloma
    HEALTHINF: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL. 5: HEALTHINF, 2021, : 501 - 508
  • [9] Text clustering based on pre-trained models and autoencoders
    Xu, Qiang
    Gu, Hao
    Ji, ShengWei
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2024, 17
  • [10] Compressing Pre-trained Models of Code into 3 MB
    Shi, Jieke
    Yang, Zhou
    Xu, Bowen
    Kang, Hong Jin
    Lo, David
    PROCEEDINGS OF THE 37TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE 2022, 2022,