An improved method for inference of piecewise linear systems by detecting jumps using derivative estimation

被引:1
|
作者
Selcuk, A. M. [1 ]
Oktem, H. [1 ]
机构
[1] Middle E Tech Univ, Inst Appl Math, TR-06531 Ankara, Turkey
关键词
Piecewise linear systems; Hybrid systems; Inferential modeling; Switching networks; Gene networks; Local polynomial fitting; Jump detection; CELL-DIFFERENTIATION; REGULATORY NETWORKS; GENE NETWORKS; MODEL; MULTISTATIONARITY; IDENTIFICATION; REGRESSION; MEMORY;
D O I
10.1016/j.nahs.2009.01.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Inference of dynamical systems using piecewise linear models is a promising active research area. Most of the investigations in this field have been stimulated by the research in functional genomics. In this article we study the inference problem in piecewise linear systems. We propose first identifying the state transitions by detecting the jumps of the derivative estimates, then finding the guard conditions of the state transitions (thresholds) from the values of the state variables at the state transition time and finally using the conventional gene regulatory network inference methods to infer the regulatory relations. This approach does not require a priori information or assumption on the guard conditions and provides robustness to environmental or measurement noise underlined by the used jump detection filter. We discuss the particular problems where the suggested method can improve the efficiency and demonstrate the results on a comparative basis. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:277 / 287
页数:11
相关论文
共 50 条
  • [21] Improved parameter estimates for non-linear dynamical models using a bootstrap method
    Wei, H. L.
    Billings, S. A.
    INTERNATIONAL JOURNAL OF CONTROL, 2009, 82 (11) : 1991 - 2001
  • [22] Parameter estimation and model selection for a class of hysteretic systems using Bayesian inference
    Worden, K.
    Hensman, J. J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2012, 32 : 153 - 169
  • [23] Algebraic Parameter Estimation Using Kernel Representation of Linear Systems
    Ghoshal, Debarshi Patanjali
    Gopalakrishnan, Kumar
    Michalska, Hannah
    IFAC PAPERSONLINE, 2017, 50 (01): : 12898 - 12904
  • [24] Parameter Estimation in Linear Dynamic Systems using Bayesian networks
    Garan, Maryna
    Vernon, Sylvain
    Kovalenko, Iaroslav
    Modrlak, Osvald
    Lepsik, Petr
    PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 203 - 208
  • [25] An improved parameter estimation method using limit cycle data
    Kaya, I
    Atherton, DP
    UKACC INTERNATIONAL CONFERENCE ON CONTROL '98, VOLS I&II, 1998, : 682 - 687
  • [26] Application of a novel linearization method to compare the on-off control strategies modeled by piecewise linear systems
    Sireteanu, Tudor
    Solomon, Ovidiu
    Mitu, Ana-Maria
    Giuclea, Marius
    JOURNAL OF VIBRATION AND CONTROL, 2020, 26 (23-24) : 2125 - 2135
  • [27] Set-membership state estimation for discrete time piecewise affine systems using zonotopes
    Tabatabaeipour, S. Mojtaba
    Stoustrup, Jakob
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 3149 - 3154
  • [28] On reliability challenges of repairable systems using hierarchical bayesian inference and maximum likelihood estimation
    BahooToroody, Ahmad
    Abaei, Mohammad Mahdi
    Arzaghi, Ehsan
    Song, Guozheng
    De Carlo, Filippo
    Paltrinieri, Nicola
    Abbassi, Rouzbeh
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2020, 135 : 157 - 165
  • [29] Estimation of Leaf Wetness Duration Using Adaptive Neuro-Fuzzy Inference Systems
    Ghobakhlou, A.
    Amir, F.
    Whalley, J.
    Sallis, P.
    21ST INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2015), 2015, : 585 - 591
  • [30] Improved Q-Learning Method for Linear Discrete-Time Systems
    Chen, Jian
    Wang, Jinhua
    Huang, Jie
    PROCESSES, 2020, 8 (03)