The countable Telescope Conjecture for module categories

被引:20
作者
Saroch, Jan [1 ]
Stovicek, Jan [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague 18675 8, Czech Republic
[2] Norges Tekn Nat Vitenskapelige Univ, Inst Matematiske Fag, N-7491 Trondheim, Norway
关键词
Cotorsion pair; Deconstruction; Coherent functor; Triangulated category; Telescope conjecture;
D O I
10.1016/j.aim.2008.05.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By the Telescope Conjecture for Module Categories, we mean the following claim: "Let R be any ring and (A, B) be a hereditary cotorsion pair in Mod-R with A and B closed under direct limits. Then (A, B) is of finite type." We prove a modification of this conjecture with the word 'finite' replaced by 'countable.' We show that a hereditary cotorsion pair (A, B) of modules over an arbitrary ring R is generated by a set of strongly countably presented modules provided that B is closed under unions of well-ordered chains. We also characterize the modules in B and the countably presented modules in A in terms of morphisms between finitely presented modules, and show that (A, B) is cogenerated by a single pure-injective module provided that A is closed under direct limits. Then we move our attention to strong analogies between cotorsion pairs in module categories and localizing pairs in compactly generated triangulated categories. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1002 / 1036
页数:35
相关论文
共 44 条
[1]  
Adamek J., 1994, LOCALLY PRESENTABLE
[2]  
AUSLANDER M, 1995, CAMBRIDGE STUD ADV M, V36
[3]   Tilting cotorsion pairs [J].
Bazzoni, S ;
Eklof, PC ;
Trlifaj, J .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :683-696
[4]   One dimensional tilting modules are of finite type [J].
Bazzoni, Silvana ;
Herbera, Dolors .
ALGEBRAS AND REPRESENTATION THEORY, 2008, 11 (01) :43-61
[5]   All tilting modules are of finite type [J].
Bazzoni, Silvana ;
Stovicek, Jan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (12) :3771-3781
[6]   Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras [J].
Beligiannis, A .
JOURNAL OF ALGEBRA, 2005, 288 (01) :137-211
[7]  
BOKSTEDT M, 1993, COMPOS MATH, V86, P209
[8]   LOCALIZATION OF SPECTRA WITH RESPECT TO HOMOLOGY [J].
BOUSFIELD, AK .
TOPOLOGY, 1979, 18 (04) :257-281
[9]  
Crawley-Boevey W, 1998, CMS C P, V23, P29
[10]  
Eklof P C., 2002, Almost Free Modules, DOI 10.1016/S0924-6509(02)80006-X