An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations

被引:43
作者
Khan, Y. [1 ]
Vazquez-Leal, H. [2 ]
Faraz, N. [3 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[2] Univ Veracruz, Sch Elect Instrumentat, Xalapa, Veracruz, Mexico
[3] Donghua Univ, Modern Text Inst, Shanghai 200051, Peoples R China
关键词
Auxiliary parameter; Laplace transform; Nonlinear problems; Adomian polynomials; HOMOTOPY PERTURBATION METHOD; VARIATIONAL ITERATION METHOD; DECOMPOSITION METHOD;
D O I
10.1016/j.apm.2012.06.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we proposed an auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations. This method is called the Auxiliary Laplace Parameter Method (ALPM). The nonlinear terms can be easily handled by the use of Adomian polynomials. Comparison of the present solution is made with the existing solutions and excellent agreement is noted. The fact that the proposed technique solves nonlinear problems without any discretization or restrictive assumptions can be considered as a clear advantage of this algorithm over the numerical methods. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2702 / 2708
页数:7
相关论文
共 30 条
[1]  
[Anonymous], 2011, J KING SAUD UNIV SCI, DOI DOI 10.1016/j.jksus.2010.06.024
[2]   Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations [J].
Barari, A. ;
Omidvar, M. ;
Ghotbi, Abdoul R. ;
Ganji, D. D. .
ACTA APPLICANDAE MATHEMATICAE, 2008, 104 (02) :161-171
[4]  
Faraz N., 2011, J. King Saud Univer.-Sci, V23, P77, DOI [10.1016/j.jksus.2010.06.010, DOI 10.1016/j.jksus.2010.06.010]
[5]   An Alternative Approach to Differential-Difference Equations Using the Variational Iteration Method [J].
Faraz, Naeem ;
Khan, Yasir ;
Austin, Francis .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (12) :1055-1059
[6]   Approximate analysis of two-mass-spring systems and buckling of a column [J].
Ganji, S. S. ;
Barari, A. ;
Ganji, D. D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) :1088-1095
[7]   Meshless method of lines for the numerical solution of generalized Kuramoto-Sivashinsky equation [J].
Haq, Sirajul ;
Bibi, Nagina ;
Tirmizi, S. I. A. ;
Usman, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) :2404-2413
[8]  
He J.-H., 2010, Nonlinear Sci. Lett. A, V1, P1
[9]   An elementary introduction to the homotopy perturbation method [J].
He, Ji-Huan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (03) :410-412
[10]   Application of the homotopy perturbation method for the solution of inverse heat conduction problem [J].
Hetmaniok, Edyta ;
Nowak, Iwona ;
Slota, Damian ;
Witula, Roman .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (01) :30-35