Identification of a Nuclear Exosome Decay Pathway for Processed Transcripts

被引:199
作者
Meola, Nicola [1 ]
Domanski, Michal [1 ,5 ]
Karadoulama, Evdoxia [1 ,2 ,3 ]
Chen, Yun [2 ,3 ]
Gentil, Coline [1 ]
Pultz, Dennis [4 ]
Vitting-Seerup, Kristoffer [2 ,3 ]
Lykke-Andersen, Soren [1 ]
Andersen, Jens S. [4 ]
Sandelin, Albin [2 ,3 ]
Jensen, Torben Heick [1 ]
机构
[1] Aarhus Univ, Dept Mol Biol & Genet, CF Mollers Alle 3,Bldg 1130, DK-8000 Aarhus C, Denmark
[2] Univ Copenhagen, Dept Biol, Bioinformat Ctr, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
[3] Univ Copenhagen, Biotech Res & Innovat Ctr, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
[4] Univ Southern Denmark, Dept Biochem & Mol Biol, Campusvej 55, DK-5230 Odense, Denmark
[5] Univ Bern, Dept Chem & Biochem, Freiestr 3, CH-3012 Bern, Switzerland
基金
新加坡国家研究基金会; 欧洲研究理事会;
关键词
CRYPTIC UNSTABLE TRANSCRIPTS; POLY(A) TAIL LENGTH; MESSENGER-RNA; POLY(A)-BINDING PROTEIN; MOLECULAR ARCHITECTURE; 3'-END MATURATION; QUALITY CONTROL; POLYMERASE; COMPLEX; DEGRADATION;
D O I
10.1016/j.molcel.2016.09.025
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its co-factor Mtr4p/hMTR4, which links to RNA-binding protein adaptors. One example is the trimeric human nuclear exosome targeting (NEXT) complex, which is composed of hMTR4, the Zn-finger protein ZCCHC8, and the RNA-binding factor RBM7. NEXT primarily targets early and unprocessed transcripts, which demands a rationale for how the nuclear exosome recognizes processed RNAs. Here, we describe the poly(A) tail exosome targeting (PAXT) connection, which comprises the ZFC3H1 Zn-knuckle protein as a central link between hMTR4 and the nuclear poly(A)-binding protein PABPN1. Individual depletion of ZFC3H1 and PABPN1 results in the accumulation of common transcripts that are generally both longer and more extensively polyadenylated than NEXT substrates. Importantly, ZFC3H1/PABPN1 and ZCCHC8/RBM7 contact hMTR4 in a mutually exclusive manner, revealing that the exosome targets nuclear transcripts of different maturation status by substituting its hMTR4-associating adaptors.
引用
收藏
页码:520 / 533
页数:14
相关论文
共 54 条
  • [1] NOPdb: Nucleolar Proteome Database-2008 update
    Ahmad, Yasmeen
    Boisvert, Francois-Michel
    Gregor, Peter
    Cobley, Andy
    Lamond, Angus I.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : D181 - D184
  • [2] The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases
    Allmang, C
    Petfalski, E
    Podtelejnikov, A
    Mann, M
    Tollervey, D
    Mitchell, P
    [J]. GENES & DEVELOPMENT, 1999, 13 (16) : 2148 - 2158
  • [3] The human cap-binding complex is functionally connected to the nuclear RNA exosome
    Andersen, Peter Refsing
    Domanski, Michal
    Kristiansen, Maiken S.
    Storvall, Helena
    Ntini, Evgenia
    Verheggen, Celine
    Schein, Aleks
    Bunkenborg, Jakob
    Poser, Ina
    Hallais, Marie
    Sandberg, Rickard
    Hyman, Anthony
    LaCava, John
    Rout, Michael P.
    Andersen, Jens S.
    Bertrand, Edouard
    Jensen, Torben Heick
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (12) : 1367 - 1376
  • [4] An atlas of active enhancers across human cell types and tissues
    Andersson, Robin
    Gebhard, Claudia
    Miguel-Escalada, Irene
    Hoof, Ilka
    Bornholdt, Jette
    Boyd, Mette
    Chen, Yun
    Zhao, Xiaobei
    Schmidl, Christian
    Suzuki, Takahiro
    Ntini, Evgenia
    Arner, Erik
    Valen, Eivind
    Li, Kang
    Schwarzfischer, Lucia
    Glatz, Dagmar
    Raithel, Johanna
    Lilje, Berit
    Rapin, Nicolas
    Bagger, Frederik Otzen
    Jorgensen, Mette
    Andersen, Peter Refsing
    Bertin, Nicolas
    Rackham, Owen
    Burroughs, A. Maxwell
    Baillie, J. Kenneth
    Ishizu, Yuri
    Shimizu, Yuri
    Furuhata, Erina
    Maeda, Shiori
    Negishi, Yutaka
    Mungall, Christopher J.
    Meehan, Terrence F.
    Lassmann, Timo
    Itoh, Masayoshi
    Kawaji, Hideya
    Kondo, Naoto
    Kawai, Jun
    Lennartsson, Andreas
    Daub, Carsten O.
    Heutink, Peter
    Hume, David A.
    Jensen, Torben Heick
    Suzuki, Harukazu
    Hayashizaki, Yoshihide
    Mueller, Ferenc
    Forrest, Alistair R. R.
    Carninci, Piero
    Rehli, Michael
    Sandelin, Albin
    [J]. NATURE, 2014, 507 (7493) : 455 - +
  • [5] Termination of cryptic unstable transcripts is directed by yeast RNA-Binding proteins Nrd1 and Nab3
    Arigo, John T.
    Eyler, Daniel E.
    Carroll, Kristina L.
    Corden, Jeffry L.
    [J]. MOLECULAR CELL, 2006, 23 (06) : 841 - 851
  • [6] Polyadenylation-Dependent Control of Long Noncoding RNA Expression by the Poly(A)-Binding Protein Nuclear 1
    Beaulieu, Yves B.
    Kleinman, Claudia L.
    Landry-Voyer, Anne-Marie
    Majewski, Jacek
    Bachand, Francois
    [J]. PLOS GENETICS, 2012, 8 (11):
  • [7] Canonical Poly(A) Polymerase Activity Promotes the Decay of a Wide Variety of Mammalian Nuclear RNAs
    Bresson, Stefan M.
    Hunter, Olga V.
    Hunter, Allyson C.
    Conrad, Nicholas K.
    [J]. PLOS GENETICS, 2015, 11 (10):
  • [8] The Human Nuclear Poly(A)-Binding Protein Promotes RNA Hyperadenylation and Decay
    Bresson, Stefan M.
    Conrad, Nicholas K.
    [J]. PLOS GENETICS, 2013, 9 (10):
  • [9] Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs
    Brown, Jessica A.
    Valenstein, Max L.
    Yario, Therese A.
    Tycowski, Kazimierz T.
    Steitz, Joan A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (47) : 19202 - 19207
  • [10] Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters
    Chen, Yun
    Pai, Athma A.
    Herudek, Jan
    Lubas, Michal
    Meola, Nicola
    Jaervelin, Aino I.
    Andersson, Robin
    Pelechano, Vicent
    Steinmetz, Lars M.
    Jensen, Torben Heick
    Sandelin, Albin
    [J]. NATURE GENETICS, 2016, 48 (09) : 984 - +