Asymptotic normality of the size of the giant component in a random hypergraph

被引:18
作者
Bollobas, Bela [2 ,3 ]
Riordan, Oliver [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 OWB, England
[3] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
基金
美国国家科学基金会;
关键词
random hypergraph; phase transition; martingale; COUNTING CONNECTED GRAPHS; PHASE-TRANSITION; LIMIT-THEOREMS; MODEL;
D O I
10.1002/rsa.20456
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recently, we adapted random walk arguments based on work of Nachmias and Peres, Martin-Lof, Karp and Aldous to give a simple proof of the asymptotic normality of the size of the giant component in the random graph G(n,p) above the phase transition. Here we show that the same method applies to the analogous model of random k-uniform hypergraphs, establishing asymptotic normality throughout the (sparse) supercritical regime. Previously, asymptotic normality was known only towards the two ends of this regime. (c) 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012
引用
收藏
页码:441 / 450
页数:10
相关论文
共 15 条