Asymptotic normality of the size of the giant component in a random hypergraph
被引:18
作者:
Bollobas, Bela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 OWB, England
Univ Memphis, Dept Math Sci, Memphis, TN 38152 USAUniv Oxford, Inst Math, Oxford OX1 3LB, England
Bollobas, Bela
[2
,3
]
论文数: 引用数:
h-index:
机构:
Riordan, Oliver
[1
]
机构:
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 OWB, England
[3] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
Recently, we adapted random walk arguments based on work of Nachmias and Peres, Martin-Lof, Karp and Aldous to give a simple proof of the asymptotic normality of the size of the giant component in the random graph G(n,p) above the phase transition. Here we show that the same method applies to the analogous model of random k-uniform hypergraphs, establishing asymptotic normality throughout the (sparse) supercritical regime. Previously, asymptotic normality was known only towards the two ends of this regime. (c) 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012
机构:
Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
Univ Memphis, Dept Math Sci, Memphis, TN 38152 USADept Pure Math & Math Stat, Cambridge CB3 0WB, England
机构:
Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, EnglandUniv Oxford, Inst Math, Oxford OX1 3LB, England
机构:
Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
Univ Memphis, Dept Math Sci, Memphis, TN 38152 USADept Pure Math & Math Stat, Cambridge CB3 0WB, England
机构:
Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, EnglandUniv Oxford, Inst Math, Oxford OX1 3LB, England