Interpolation and Embeddings of Weighted Tent Spaces

被引:15
作者
Amenta, Alex [1 ,2 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, Lab Math Orsay, CNRS, F-91405 Orsay, France
[2] Delft Univ Technol, Delft Inst Appl Math, POB 5031, NL-2628 CD Delft, Netherlands
基金
澳大利亚研究理事会;
关键词
Weighted tent spaces; Complex interpolation; Real interpolation; Hardy-Littlewood-Sobolev embeddings; HARDY; OPERATORS;
D O I
10.1007/s00041-017-9521-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a metric measure space X, we consider a scale of function spaces , called the weighted tent space scale. This is an extension of the tent space scale of Coifman, Meyer, and Stein. Under various geometric assumptions on X we identify some associated interpolation spaces, in particular certain real interpolation spaces. These are identified with a new scale of function spaces, which we call Z -spaces, that have recently appeared in the work of Barton and Mayboroda on elliptic boundary value problems with boundary data in Besov spaces. We also prove Hardy-Littlewood-Sobolev-type embeddings between weighted tent spaces.
引用
收藏
页码:108 / 140
页数:33
相关论文
共 23 条
[1]  
Amenta A., 2016, ARXIV160703852
[2]  
Amenta A, 2014, OPER THEORY ADV APPL, V240, P1
[3]  
[Anonymous], ISRAEL MATH C P
[4]   Hardy spaces of differential forms on Riemannian manifolds [J].
Auscher, Pascal ;
McIntosh, Alan ;
Russ, Emmanuel .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :192-248
[5]  
Barton A, 2016, MEM AM MATH SOC, V243, P1
[6]  
Björn A, 2011, EMS TRACTS MATH, V17, P1
[7]   INTERPOLATION BETWEEN VECTOR-VALUED HARDY-SPACES [J].
BLASCO, O ;
XU, QH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (02) :331-359
[8]  
Coifman R.R., 1971, LECT NOTES MATH ANAL, V242
[9]   SOME NEW FUNCTION-SPACES AND THEIR APPLICATIONS TO HARMONIC-ANALYSIS [J].
COIFMAN, RR ;
MEYER, Y ;
STEIN, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (02) :304-335
[10]  
COIFMAN RR, 1983, LECT NOTES MATH, V992, P1