Teflon AF Materials

被引:46
作者
Zhang, Hong [1 ]
Weber, Stephen G. [1 ]
机构
[1] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
来源
FLUOROUS CHEMISTRY | 2012年 / 308卷
基金
美国国家科学基金会;
关键词
Electrochemical sensors; Electrowetting; Free volume; Gas sensors; Hydrophobicity; Nanocomposites; Teflon AF; Transport; Waveguides; NITRIC-OXIDE SENSOR; FREE-VOLUME; ORGANOPHILIC PERVAPORATION; PLASMONIC PROPERTIES; POLYMERIC MEMBRANES; MICROFLUIDIC DEVICE; VAPOR TRANSPORT; CARBON-DIOXIDE; CELL-ADHESION; GAS;
D O I
10.1007/128_2011_249
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
The unique combination of chemical, thermal, and mechanical stability, high fractional free volume, low refractive index, low surface energy, and wide optical transparency has led to growing interest in Teflon Amorphous Fluoropolymers (AFs) for a wide spectrum of applications ranging from chemical separations and sensors to bioassay platforms. New opportunities arise from the incorporation of nanoscale materials in Teflon AFs. In this chapter, we highlight fractional free volume - the most important property of Teflon AFs - with the aim of clarifying the unique transport behavior through Teflon AF membranes. We then review state-of-the-art developments based on Teflon AF platforms by focusing on the chemistry behind the applications.
引用
收藏
页码:307 / 337
页数:31
相关论文
共 110 条
  • [1] Gas and vapor sorption, permeation, and diffusion in glassy amorphous teflon AF1600
    Alentiev, AY
    Shantarovich, VP
    Merkel, TC
    Bondar, VI
    Freeman, BD
    Yampolskii, YP
    [J]. MACROMOLECULES, 2002, 35 (25) : 9513 - 9522
  • [2] Dynamic Seeding of Perfusing Human Umbilical Vein Endothelial Cells (HUVECs) onto Dual-Function Cell Adhesion Ligands: Arg-Gly-Asp (RGD)-Streptavidin and Biotinylated Fibronectin
    Anamelechi, Charles C.
    Clermont, Edward C.
    Novak, Matthew T.
    Reichert, William M.
    [J]. LANGMUIR, 2009, 25 (10) : 5725 - 5730
  • [3] High performance perfluoropolymer films and membranes
    Arcella, V
    Ghielmi, A
    Tommasi, G
    [J]. ADVANCED MEMBRANE TECHNOLOGY, 2003, 984 : 226 - 244
  • [4] Ballermann BJ, 1998, NEWS PHYSIOL SCI, V13, P154
  • [5] Preparation and plasmonic properties of polymer-based composites containing Ag-Au alloy nanoparticles produced by vapor phase co-deposition
    Beyene, H. T.
    Chakravadhanula, V. S. K.
    Hanisch, C.
    Elbahri, M.
    Strunskus, T.
    Zaporojtchenko, V.
    Kienle, L.
    Faupel, F.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2010, 45 (21) : 5865 - 5871
  • [6] Cathode development for alkaline fuel cells based on a porous silver membrane
    Bidault, F.
    Kucernak, A.
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (11) : 4950 - 4956
  • [7] Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF® matrix -: art. no. 013103
    Biswas, A
    Eilers, H
    Hidden, F
    Aktas, OC
    Kiran, CVS
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (01)
  • [8] Polymer-metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition
    Biswas, A
    Aktas, OC
    Kanzow, J
    Saeed, U
    Strunskus, T
    Zaporojtchenko, V
    Faupel, F
    [J]. MATERIALS LETTERS, 2004, 58 (09) : 1530 - 1534
  • [9] Controlled generation of Ni nanoparticles in the capping layers of Teflon AF by vapor-phase tandem evaporation
    Biswas, A
    Marton, Z
    Kanzow, J
    Kruse, J
    Zaporojtchenko, V
    Faupel, F
    Strunskus, T
    [J]. NANO LETTERS, 2003, 3 (01) : 69 - 73
  • [10] Networks of ultra-fine Ag nanocrystals in a Teflon AF® matrix by vapour phase e-beam-assisted deposition
    Biswas, A.
    Bayer, I. S.
    Marken, B.
    Pounds, T. D.
    Norton, M. G.
    [J]. NANOTECHNOLOGY, 2007, 18 (30)