Nonlinear and nonnormal filter using importance sampling: Antithetic Monte Carlo integration

被引:3
|
作者
Tanizaki, H [1 ]
机构
[1] Kobe Univ, Fac Econ, Nada Ku, Kobe, Hyogo 6578501, Japan
关键词
state-space model; filtering; Monte Carlo integration; importance sampling; antithetic Monte Carlo; resampling;
D O I
10.1080/03610919908813560
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the importance sampling filter proposed by Mariano and Tanizaki (1995). Tanizaki (1996), Tanizaki and Mariano (1994) is extended using the antithetic Monte Carlo method to reduce the simulation errors. By;Monte Carlo studies, the importance sampling filter with the antithetic Monte Carlo method is compared with the importance sampling filter without the antithetic Monte Carlo method. It is shown that for all the simulation studies the former is clearly superior to the latter especially when number of random draws is small.
引用
收藏
页码:463 / 486
页数:24
相关论文
共 50 条
  • [41] On pricing discrete barrier options using conditional expectation and importance sampling Monte Carlo
    Oekten, Giray
    Salta, Emmanuel
    Goencue, Ahmet
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (3-4) : 484 - 494
  • [42] Adaptive importance sampling for multilevel Monte Carlo Euler method
    Ben Alaya, Mohamed
    Hajji, Kaouther
    Kebaier, Ahmed
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2023, 95 (02) : 303 - 327
  • [43] OPTIMIZATION OF IMPORTANCE-SAMPLING PARAMETERS IN MONTE-CARLO
    MACMILLAN, DB
    NUCLEAR SCIENCE AND ENGINEERING, 1972, 48 (02) : 219 - +
  • [44] Aerospace applications of Weibull and Monte Carlo simulation with importance sampling
    Bavuso, SJ
    ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM - 1997 PROCEEDINGS: THE INTERNATIONAL SYMPOSIUM ON PRODUCT QUALITY & INTEGRITY, 1997, : 208 - 210
  • [45] Differential importance measures estimation through Monte Carlo and importance sampling techniques
    La Rovere, S.
    Vestrucci, P.
    Sperandii, M.
    ADVANCES IN SAFETY, RELIABILITY AND RISK MANAGEMENT, 2012, : 2237 - 2245
  • [46] Efficient importance sampling for Monte Carlo simulation of multicast networks
    Lassila, P
    Karvo, J
    Virtamo, J
    IEEE INFOCOM 2001: THE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-3, PROCEEDINGS: TWENTY YEARS INTO THE COMMUNICATIONS ODYSSEY, 2001, : 432 - 439
  • [47] Efficient importance sampling for Monte Carlo evaluation of exceedance probabilities
    Chan, Hock Peng
    Lai, Tze Leung
    ANNALS OF APPLIED PROBABILITY, 2007, 17 (02): : 440 - 473
  • [48] Design of sparse linear arrays by Monte Carlo importance sampling
    Kay, S
    OCEANS 2000 MTS/IEEE - WHERE MARINE SCIENCE AND TECHNOLOGY MEET, VOLS 1-3, CONFERENCE PROCEEDINGS, 2000, : 1501 - 1507
  • [49] Efficient importance sampling for Monte Carlo simulation of loss systems
    Lassila, PE
    Virtamo, JT
    TELETRAFFIC ENGINEERING IN A COMPETITIVE WORLD, 1999, 3 : 787 - 796
  • [50] Monte Carlo Variance Reduction. Importance Sampling Techniques
    Florentin, Olariu St Emanuel
    11TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2009), 2009, : 137 - 141