Reference Genomes from Distantly Related Species Can Be Used for Discovery of Single Nucleotide Polymorphisms to Inform Conservation Management

被引:51
作者
Galla, Stephanie J. [1 ]
Forsdick, Natalie J. [2 ]
Brown, Liz [3 ]
Hoeppner, Marc P. [4 ]
Knapp, Michael [2 ]
Maloney, Richard F. [5 ]
Moraga, Roger [6 ]
Santure, Anna W. [7 ]
Steeves, Tammy E. [1 ]
机构
[1] Univ Canterbury, Sch Biol Sci, Christchurch 8140, New Zealand
[2] Univ Otago, Dept Anat, Dunedin 9054, New Zealand
[3] Te Manahuna, Dept Conservat, Twizel 7901, New Zealand
[4] Univ Kiel, Inst Clin Mol Biol, D-24105 Kiel, Germany
[5] Dept Conservat, Sci & Policy Grp, Christchurch 8011, New Zealand
[6] Tea Break Bioinformat Ltd, Palmerston North 4144, New Zealand
[7] Univ Auckland, Sch Biol Sci, Auckland 1142, New Zealand
关键词
conservation genomics; conservation genomics gap; SNP discovery; B10K; threatened species; birds; HIGHLY HETEROZYGOUS GENOMES; POPULATION GENOMICS; GENETIC DIVERSITY; READ ALIGNMENT; NEW-ZEALAND; SEQUENCE; QUALITY; IMPLEMENTATION; ANNOTATION; EXTINCTION;
D O I
10.3390/genes10010009
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Threatened species recovery programmes benefit from incorporating genomic data into conservation management strategies to enhance species recovery. However, a lack of readily available genomic resources, including conspecific reference genomes, often limits the inclusion of genomic data. Here, we investigate the utility of closely related high-quality reference genomes for single nucleotide polymorphism (SNP) discovery using the critically endangered kak (i) over bar /black stilt (Himantopus novaezelandiae) and four Charadriiform reference genomes as proof of concept. We compare diversity estimates (i.e., nucleotide diversity, individual heterozygosity, and relatedness) based on kak (i) over bar SNPs discovered from genotyping-by-sequencing and whole genome resequencing reads mapped to conordinal (killdeer, Charadrius vociferus), confamilial (pied avocet, Recurvirostra avosetta), congeneric (pied stilt, Himantopus himantopus) and conspecific reference genomes. Results indicate that diversity estimates calculated from SNPs discovered using closely related reference genomes correlate significantly with estimates calculated from SNPs discovered using a conspecific genome. Congeneric and confamilial references provide higher correlations and more similar measures of nucleotide diversity, individual heterozygosity, and relatedness. While conspecific genomes may be necessary to address other questions in conservation, SNP discovery using high-quality reference genomes of closely related species is a cost-effective approach for estimating diversity measures in threatened species.
引用
收藏
页数:19
相关论文
共 101 条
[11]   Genomic resources for the endangered Hawaiian honeycreepers [J].
Callicrate, Taylor ;
Dikow, Rebecca ;
Thomas, James W. ;
Mullikin, James C. ;
Jarvis, Erich D. ;
Fleischer, Robert C. .
BMC GENOMICS, 2014, 15
[12]   Two Low Coverage Bird Genomes and a Comparison of Reference-Guided versus De Novo Genome Assemblies [J].
Card, Daren C. ;
Schield, Drew R. ;
Reyes-Velasco, Jacobo ;
Fujita, Matthew K. ;
Andrew, Audra L. ;
Oyler-McCance, Sara J. ;
Fike, Jennifer A. ;
Tomback, Diana F. ;
Ruggiero, Robert P. ;
Castoe, Todd A. .
PLOS ONE, 2014, 9 (09)
[13]   Informed and automated k-mer size selection for genome assembly [J].
Chikhi, Rayan ;
Medvedev, Paul .
BIOINFORMATICS, 2014, 30 (01) :31-37
[14]   The variant call format and VCFtools [J].
Danecek, Petr ;
Auton, Adam ;
Abecasis, Goncalo ;
Albers, Cornelis A. ;
Banks, Eric ;
DePristo, Mark A. ;
Handsaker, Robert E. ;
Lunter, Gerton ;
Marth, Gabor T. ;
Sherry, Stephen T. ;
McVean, Gilean ;
Durbin, Richard .
BIOINFORMATICS, 2011, 27 (15) :2156-2158
[15]  
Crusoe Michael R, 2015, F1000Res, V4, P900, DOI 10.12688/f1000research.6924.1
[16]   Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis [J].
Dalloul, Rami A. ;
Long, Julie A. ;
Zimin, Aleksey V. ;
Aslam, Luqman ;
Beal, Kathryn ;
Blomberg, Le Ann ;
Bouffard, Pascal ;
Burt, David W. ;
Crasta, Oswald ;
Crooijmans, Richard P. M. A. ;
Cooper, Kristal ;
Coulombe, Roger A. ;
De, Supriyo ;
Delany, Mary E. ;
Dodgson, Jerry B. ;
Dong, Jennifer J. ;
Evans, Clive ;
Frederickson, Karin M. ;
Flicek, Paul ;
Florea, Liliana ;
Folkerts, Otto ;
Groenen, Martien A. M. ;
Harkins, Tim T. ;
Herrero, Javier ;
Hoffmann, Steve ;
Megens, Hendrik-Jan ;
Jiang, Andrew ;
de Jong, Pieter ;
Kaiser, Pete ;
Kim, Heebal ;
Kim, Kyu-Won ;
Kim, Sungwon ;
Langenberger, David ;
Lee, Mi-Kyung ;
Lee, Taeheon ;
Mane, Shrinivasrao ;
Marcais, Guillaume ;
Marz, Manja ;
McElroy, Audrey P. ;
Modise, Thero ;
Nefedov, Mikhail ;
Notredame, Cedric ;
Paton, Ian R. ;
Payne, William S. ;
Pertea, Geo ;
Prickett, Dennis ;
Puiu, Daniela ;
Qioa, Dan ;
Raineri, Emanuele ;
Ruffier, Magali .
PLOS BIOLOGY, 2010, 8 (09)
[17]   Genome-wide genetic marker discovery and genotyping using next-generation sequencing [J].
Davey, John W. ;
Hohenlohe, Paul A. ;
Etter, Paul D. ;
Boone, Jason Q. ;
Catchen, Julian M. ;
Blaxter, Mark L. .
NATURE REVIEWS GENETICS, 2011, 12 (07) :499-510
[18]   Construction of relatedness matrices using genotyping-by-sequencing data [J].
Dodds, Ken G. ;
McEwan, John C. ;
Brauning, Rudiger ;
Anderson, Rayna M. ;
van Stijn, Tracey C. ;
Kristjansson, Theodor ;
Clarke, Shannon M. .
BMC GENOMICS, 2015, 16
[19]   Analysis of Phylogenomic Tree Space Resolves Relationships Among Marsupial Families [J].
Duchene, David A. ;
Bragg, Jason G. ;
Duchene, Sebastian ;
Neaves, Linda E. ;
Potter, Sally ;
Moritz, Craig ;
Johnson, Rebecca N. ;
Ho, Simon Y. W. ;
Eldridge, Mark D. B. .
SYSTEMATIC BIOLOGY, 2018, 67 (03) :400-412
[20]   Genome sequencing and population genomics in non-model organisms [J].
Ellegren, Hans .
TRENDS IN ECOLOGY & EVOLUTION, 2014, 29 (01) :51-63