A biologically inspired visual integrated model for image classification

被引:13
|
作者
Wei, Bing [1 ,2 ]
Hao, Kuangrong [1 ,2 ]
Gao, Lei [3 ,4 ]
Tang, Xue-song [1 ,2 ]
Zhao, Yudi [1 ,2 ]
机构
[1] Donghua Univ, Engn Res Ctr Digitized Text & Apparel Technol, Minist Educ, Shanghai 201620, Peoples R China
[2] Donghua Univ, Coll Informat Sci & Technol, 2999 Renmin North Rd, Shanghai 201620, Peoples R China
[3] Shandong Normal Univ, Sch Business, Jinan 250014, Peoples R China
[4] Commonwealth Sci & Ind Res Org CSIRO, Glen Osmond, SA 5064, Australia
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK; OBJECT RECOGNITION; DORSAL; DECAY; INFORMATION; STREAMS; AGE;
D O I
10.1016/j.neucom.2020.04.081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a biologically inspired visual integrated model for image classification, called VMVI-CNN. Motivated in part by recent neuroscience progress in revealing integrated functions of human visual system, two bio-inspired visual mechanisms (the visual memory decay mechanism and the visual interaction mechanism) are proposed and built within the VMVI-CNN to (1) control the feature information passing through, and (2) increase the richness of feature information. The proposed method is tested on three benchmark datasets (MNIST, Cifar-10, and Mini-ImageNet) and a real-world industrial dataset. The results demonstrate that the new model can extract distinctive features and exhibit a better recognition performance than the current state-of-the-art approaches. © 2020 Elsevier B.V.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 50 条
  • [41] A probabilistic topic model using deep visual word representation for simultaneous image classification and annotation
    Foumani, Seyed Navid Mohammadi
    Nickabadi, Ahmad
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 59 : 195 - 203
  • [42] Mammogram image visual enhancement, mass segmentation and classification
    Al-Najdawi, Nijad
    Biltawi, Mariam
    Tedmori, Sara
    APPLIED SOFT COMPUTING, 2015, 35 : 175 - 185
  • [43] Acoustic cues to visual detection: A classification image study
    Pascucci, David
    Megna, Nicola
    Panichi, Michela
    Baldassi, Stefano
    JOURNAL OF VISION, 2011, 11 (06): : 1 - 11
  • [44] Classification of Marine Organisms in Underwater Images using CQ-HMAX Biologically Inspired Color Approach
    Jalali, Sepehr
    Seekings, Paul J.
    Tan, Cheston
    Tan, Hazel Z. W.
    Lim, Joo-Hwee
    Taylor, Elizabeth A.
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [45] A complementary integrated Transformer network for hyperspectral image classification
    Liao, Diling
    Shi, Cuiping
    Wang, Liguo
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1288 - 1307
  • [46] Feed-Forward Hierarchical Model of the Ventral Visual Stream Applied to Functional Brain Image Classification
    Keator, David B.
    Fallon, James H.
    Lakatos, Anita
    Fowlkes, Charless C.
    Potkin, Steven G.
    Ihler, Alexander
    HUMAN BRAIN MAPPING, 2014, 35 (01) : 38 - 52
  • [47] Physiologically Inspired Model for the Visual Recognition of Transitive Hand Actions
    Fleischer, Falk
    Caggiano, Vittorio
    Thier, Peter
    Giese, Martin A.
    JOURNAL OF NEUROSCIENCE, 2013, 33 (15) : 6563 - 6580
  • [48] Estimation of Model Capacity for Image Classification
    Chavan, Trupti R.
    Nandedkar, Abhijeet, V
    PROCEEDINGS OF ICETIT 2019: EMERGING TRENDS IN INFORMATION TECHNOLOGY, 2020, 605 : 501 - 508
  • [49] A novel biologically inspired local feature descriptor
    Zhang, Yun
    Tian, Tian
    Tian, Jinwen
    Gong, Junbin
    Ming, Delie
    BIOLOGICAL CYBERNETICS, 2014, 108 (03) : 275 - 290
  • [50] Efficient Image Embedding for Fine-Grained Visual Classification
    Payatsuporn, Soranan
    Kijsirikul, Boonserm
    2022-14TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST 2022), 2022, : 40 - 45