A biologically inspired visual integrated model for image classification

被引:14
作者
Wei, Bing [1 ,2 ]
Hao, Kuangrong [1 ,2 ]
Gao, Lei [3 ,4 ]
Tang, Xue-song [1 ,2 ]
Zhao, Yudi [1 ,2 ]
机构
[1] Donghua Univ, Engn Res Ctr Digitized Text & Apparel Technol, Minist Educ, Shanghai 201620, Peoples R China
[2] Donghua Univ, Coll Informat Sci & Technol, 2999 Renmin North Rd, Shanghai 201620, Peoples R China
[3] Shandong Normal Univ, Sch Business, Jinan 250014, Peoples R China
[4] Commonwealth Sci & Ind Res Org CSIRO, Glen Osmond, SA 5064, Australia
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK; OBJECT RECOGNITION; DORSAL; DECAY; INFORMATION; STREAMS; AGE;
D O I
10.1016/j.neucom.2020.04.081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a biologically inspired visual integrated model for image classification, called VMVI-CNN. Motivated in part by recent neuroscience progress in revealing integrated functions of human visual system, two bio-inspired visual mechanisms (the visual memory decay mechanism and the visual interaction mechanism) are proposed and built within the VMVI-CNN to (1) control the feature information passing through, and (2) increase the richness of feature information. The proposed method is tested on three benchmark datasets (MNIST, Cifar-10, and Mini-ImageNet) and a real-world industrial dataset. The results demonstrate that the new model can extract distinctive features and exhibit a better recognition performance than the current state-of-the-art approaches. © 2020 Elsevier B.V.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 66 条
[21]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[22]   CNN-Based Joint Clustering and Representation Learning with Feature Drift Compensation for Large-Scale Image Data [J].
Hsu, Chih-Chung ;
Lin, Chia-Wen .
IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (02) :421-429
[23]   Joint blur kernel estimation and CNN for blind image restoration [J].
Huang, Liqing ;
Xia, Youshen .
NEUROCOMPUTING, 2020, 396 :324-345
[24]   Salient object detection via multi-scale attention CNN [J].
Ji, Yuzhu ;
Zhang, Haijun ;
Wu, Q. M. Jonathan .
NEUROCOMPUTING, 2018, 322 :130-140
[25]   High-resolution paleovalley classification from airborne electromagnetic imaging and deep neural network training using digital elevation model data [J].
Jiang, Zhenjiao ;
Mallants, Dirk ;
Peeters, Luk ;
Gao, Lei ;
Soerensen, Camilla ;
Mariethoz, Gregoire .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2019, 23 (06) :2561-2580
[26]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[27]   Backpropagation Applied to Handwritten Zip Code Recognition [J].
LeCun, Y. ;
Boser, B. ;
Denker, J. S. ;
Henderson, D. ;
Howard, R. E. ;
Hubbard, W. ;
Jackel, L. D. .
NEURAL COMPUTATION, 1989, 1 (04) :541-551
[28]  
Lee CY, 2015, JMLR WORKSH CONF PRO, V38, P562
[29]   Too Big to Fail: Large Samples and the p-Value Problem [J].
Lin, Mingfeng ;
Lucas, Henry C., Jr. ;
Shmueli, Galit .
INFORMATION SYSTEMS RESEARCH, 2013, 24 (04) :906-917
[30]   Quantisation and pooling method for low-inference-latency spiking neural networks [J].
Lin, Zhitao ;
Shen, Juncheng ;
Ma, De ;
Meng, Jianyi .
ELECTRONICS LETTERS, 2017, 53 (20) :1347-1348