One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering

被引:156
作者
Fan, Zengjie [1 ,2 ]
Wang, Jinqing [1 ]
Wang, Zhaofeng [1 ]
Ran, Haiqiong [3 ]
Li, Yang [3 ]
Niu, Lengyuan [1 ]
Gong, Peiwei [1 ]
Liu, Bin [3 ]
Yang, Shengrong [1 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100080, Peoples R China
[3] Lanzhou Univ, Sch Stomatol, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
SIMULATED BODY-FLUID; GRAPHENE OXIDE; HYDROXYAPATITE COATINGS; BIOMEDICAL APPLICATIONS; TITANIUM IMPLANTS; CARBON NANOTUBES; GRAPHITE OXIDE; IN-VITRO; NANOPARTICLES; BIOCOMPATIBILITY;
D O I
10.1016/j.carbon.2013.09.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a convenient one-pot hydrothermal. strategy for the synthesis of graphene nanosheet (GNS)/hydroxyapatite (HA) nanorod composites (GNS/HA). Characterization of GNS/HA nanorod composites denote that rod-like HA, which has an average length of 55 nm and diameter of 13 nm, anchors on both sides of GNS. Introducing graphene can effectively improve the hardness and Young's modulus of HA. The synthesized GNS/HA nanorod composite containing 40 wt.% HA shows higher osseointegration ability with surrounding tissues, better biocompatibility, and more superior bone cellular proliferation induction than pristine graphene oxide and HA do. The biocompatibility of GNS/HA nanorod composite makes it a promising candidate for bone regeneration and implantation. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:407 / 416
页数:10
相关论文
共 63 条
[1]   Hydroxyapatite grafting promotes new bone formation and osseointegration of smooth titanium implants [J].
Allegrini, S ;
Rumpel, E ;
Kauschke, E ;
Fanghänel, J ;
Konig, B .
ANNALS OF ANATOMY-ANATOMISCHER ANZEIGER, 2006, 188 (02) :143-151
[2]   Hydroxyapatite nanopowders: Synthesis, densification and cell-materials interaction [J].
Banerjee, Ashis ;
Bandyopadhyay, Amit ;
Bose, Susmita .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2007, 27 (04) :729-735
[3]   Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends [J].
Bhadang, K. A. ;
Holding, C. A. ;
Thissen, H. ;
McLean, K. M. ;
Forsythe, J. S. ;
Haynes, D. R. .
ACTA BIOMATERIALIA, 2010, 6 (04) :1575-1583
[4]   Self-organization of hydroxyapatite nanorods through oriented attachment [J].
Chen, Jing Di ;
Wang, Ying Jun ;
Wei, Kun ;
Zhang, Shu Hua ;
Shi, Xue Tao .
BIOMATERIALS, 2007, 28 (14) :2275-2280
[5]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[6]   BONE-GRAFT AND BONE-GRAFT SUBSTITUTES - A REVIEW OF CURRENT TECHNOLOGY AND APPLICATIONS [J].
DAMIEN, CJ ;
PARSONS, JR .
JOURNAL OF APPLIED BIOMATERIALS, 1991, 2 (03) :187-208
[7]   In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit [J].
Darimont, GL ;
Cloots, R ;
Heinen, E ;
Seidel, L ;
Legrand, R .
BIOMATERIALS, 2002, 23 (12) :2569-2575
[8]  
Debrupa L, 2011, NANOTECHNOLOGY, V22
[9]   The effect of graphene on the lower critical solution temperature of poly(N-isopropylacrylamide) [J].
Dong, Jun ;
Weng, Jian ;
Dai, Lizong .
CARBON, 2013, 52 :326-336
[10]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240