The development of quantum networks requires stable quantum bits with which we can process, store and transport quantum information. A significant bottleneck in their performance is the ability to perform reliable local gates. It is well known that superconducting flux qubits have excellent processing ability while electron-spin nitrogen-vacancy centers in diamond are a natural memory and optical interface. Hybridization of these two systems thus presents the promise of an effective and efficient way to perform local gates. Here we report on the first step towards this: quantum state transfer between these systems.