Sets of large values of correlation functions for polynomial cubic configurations

被引:6
作者
Bergelson, V. [1 ]
Leibman, A. [1 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
ERGODIC AVERAGES; POINTWISE CONVERGENCE; TOPOLOGICAL DYNAMICS; TRANSLATIONS; SEQUENCES; SYSTEMS;
D O I
10.1017/etds.2016.49
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for any set E subset of Z with upper Banach density d(*) (E) > 0, the set 'of cubic configurations' in E is large in the following sense: for any k is an element of N and any epsilon > 0, the set {(n1 , . . . , nk) is an element of Z(k) ; d(*) (boolean AND(e1 , . . . , ek is an element of {0,1}) (E - (e(1)n(1) + . . . + e(k)n(k))) ) > d(*) (E)(2k) - epsilon} is an AVIP(0)(*)-set. We then generalize this result to the case of ` polynomial cubic configurations' e(1) p(1) (n) + . . . + e(k) p(k) (n), where the polynomials p(i) : Z(d) -> Z are assumed to be sufficiently algebraically independent.
引用
收藏
页码:499 / 522
页数:24
相关论文
共 39 条
[31]   Rational sub-nilmanifolds of a compact nilmanifold [J].
Leibman, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 :787-798
[32]   Convergence of multiple ergodic averages along polynomials of several variables [J].
Leibman, A .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 146 (1) :303-315
[33]   Pointwise convergence of ergodic averages for polynomial actions of Ζd by translations on a nilmanifold [J].
Leibman, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :215-225
[34]   Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold [J].
Leibman, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :201-213
[35]   Nilsequences, null-sequences, and multiple correlation sequences [J].
Leibman, A. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 :176-191
[36]  
Leibman A, 2010, T AM MATH SOC, V362, P1619
[37]  
McCutcheon R., 2015, COMMUNICATION
[38]   D sets and IP rich sets in Z [J].
McCutcheon, Randall ;
Zhou, Jee .
FUNDAMENTA MATHEMATICAE, 2016, 233 (01) :71-82
[39]   Universal characteristic factors and Furstenberg averages [J].
Ziegler, Tamar .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (01) :53-97