Sets of large values of correlation functions for polynomial cubic configurations

被引:6
作者
Bergelson, V. [1 ]
Leibman, A. [1 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
ERGODIC AVERAGES; POINTWISE CONVERGENCE; TOPOLOGICAL DYNAMICS; TRANSLATIONS; SEQUENCES; SYSTEMS;
D O I
10.1017/etds.2016.49
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for any set E subset of Z with upper Banach density d(*) (E) > 0, the set 'of cubic configurations' in E is large in the following sense: for any k is an element of N and any epsilon > 0, the set {(n1 , . . . , nk) is an element of Z(k) ; d(*) (boolean AND(e1 , . . . , ek is an element of {0,1}) (E - (e(1)n(1) + . . . + e(k)n(k))) ) > d(*) (E)(2k) - epsilon} is an AVIP(0)(*)-set. We then generalize this result to the case of ` polynomial cubic configurations' e(1) p(1) (n) + . . . + e(k) p(k) (n), where the polynomials p(i) : Z(d) -> Z are assumed to be sufficiently algebraically independent.
引用
收藏
页码:499 / 522
页数:24
相关论文
共 39 条
[1]  
[Anonymous], 1963, ANN MATH STUDIES
[2]  
[Anonymous], 1987, Contemp. Math.
[3]   Intersective polynomials and the polynomial Szemeredi theorem [J].
Bergelson, V. ;
Leibman, A. ;
Lesigne, E. .
ADVANCES IN MATHEMATICS, 2008, 219 (01) :369-388
[4]   Complexities of finite families of polynomials, Weyl systems, and constructions in combinatorial number theory [J].
Bergelson, V. ;
Leibman, A. ;
Lesigne, E. .
JOURNAL D ANALYSE MATHEMATIQUE, 2007, 103 (1) :47-92
[5]   Central sets and a non-commutative Roth theorem [J].
Bergelson, V. ;
McCutcheon, R. .
AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (05) :1251-1275
[6]   IP-sets and polynomial recurrence [J].
Bergelson, V ;
Furstenberg, H ;
McCutcheon, R .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :963-974
[7]   Multiple recurrence and nilsequences [J].
Bergelson, V ;
Host, B ;
Kra, B ;
Ruzsa, I .
INVENTIONES MATHEMATICAE, 2005, 160 (02) :261-303
[8]   Cubic averages and large intersections [J].
Bergelson, V. ;
Leibman, A. .
RECENT TRENDS IN ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 631 :5-19
[9]   IDEMPOTENT ULTRAFILTERS, MULTIPLE WEAK MIXING AND SZEMEREDI'S THEOREM FOR GENERALIZED POLYNOMIALS [J].
Bergelson, V. ;
McCutcheon, R. .
JOURNAL D ANALYSE MATHEMATIQUE, 2010, 111 :77-130
[10]   Set-polynomials and polynomial extension of the Hales-Jewett Theorem [J].
Bergelson, V ;
Leibman, A .
ANNALS OF MATHEMATICS, 1999, 150 (01) :33-75