Lecture hall partitions and the affine hyperoctahedral group

被引:0
|
作者
Hanusa, Christopher R. H. [1 ]
Savage, Carla D. [2 ]
机构
[1] CUNY Queens Coll, Dept Math, 65-30 Kissena Blvd, Flushing, NY 11367 USA
[2] North Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA
关键词
hyperoctahedral group; affine hyperoctahedral group; signed permutations; lecture hall partition; s-lecture hall partition; truncated lecture hall partitions; inversions; descent set; quadratic statistic; Coxeter groups; Type C; Bott's formula; inv; amaj; lhp; comaj; EULERIAN POLYNOMIALS; SERIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1997 Bousquet-Melou and Eriksson introduced lecture hall partitions as the inversion vectors of elements of the parabolic quotient (C)over-tilde/C. We provide a new view of their correspondence that allows results in one domain to be translated into the other. We determine the equivalence between combinatorial statistics in each domain and use this correspondence to translate certain generating function formulas on lecture hall partitions to new observations about (C)over-tilde/C.
引用
收藏
页数:19
相关论文
共 41 条
  • [1] The mathematics of lecture hall partitions
    Savage, Carla D.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 144 : 443 - 475
  • [2] Lecture hall P-partitions
    Branden, Petter
    Leander, Madeleine
    JOURNAL OF COMBINATORICS, 2020, 11 (02) : 391 - 412
  • [3] Character formulas descents for the hyperoctahedral group
    Adin, Ron M.
    Athanasiadis, Christos A.
    Elizalde, Sergi
    Roichman, Yuval
    ADVANCES IN APPLIED MATHEMATICS, 2017, 87 : 128 - 169
  • [4] s-Lecture hall partitions, self-reciprocal polynomials, and Gorenstein cones
    Beck, Matthias
    Braun, Benjamin
    Koeppe, Matthias
    Savage, Carla D.
    Zafeirakopoulos, Zafeirakis
    RAMANUJAN JOURNAL, 2015, 36 (1-2) : 123 - 147
  • [5] On Interpolation Categories for the Hyperoctahedral Group
    Heidersdorf, Th.
    Tyriard, G.
    ALGEBRAS AND REPRESENTATION THEORY, 2025,
  • [6] A decomposition of the group algebraof a hyperoctahedral group
    J. Matthew Douglass
    Drew E. Tomlin
    Mathematische Zeitschrift, 2018, 290 : 735 - 758
  • [7] A decomposition of the group algebraof a hyperoctahedral group
    Douglass, J. Matthew
    Tomlin, Drew E.
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (3-4) : 735 - 758
  • [8] The absolute order on the hyperoctahedral group
    Myrto Kallipoliti
    Journal of Algebraic Combinatorics, 2011, 34 : 183 - 211
  • [9] Vexillary elements in the hyperoctahedral group
    Billey, S
    Lam, TK
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 8 (02) : 139 - 152
  • [10] Vexillary Elements in the Hyperoctahedral Group
    Sara Billey
    Tao Kai Lam
    Journal of Algebraic Combinatorics, 1998, 8 : 139 - 152