Period polynomials and explicit formulas for Hecke operators on Γ0(2)

被引:13
作者
Fukuhara, Shinji [1 ]
Yang, Yifan [2 ]
机构
[1] Tsuda Coll, Dept Math, Tokyo 1878577, Japan
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
关键词
MODULAR-FORMS; INTEGERS; SUMS; REPRESENTATIONS;
D O I
10.1017/S0305004108001321
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S-w+(2) (Gamma(0)(N)) be the vector space of cusp forms of weight w + 2 on the congruence subgroup Gamma(0)(N). We first determine explicit formulas for period polynomials of elements in Sw+2(Gamma(0)(N)) by means of Bernoulli polynomials. When N = 2, from these explicit formulas we obtain new bases for Sw+2(Gamma(0)(2)), and extend the Eichler-Shimura-Manin isomorphism theorem to Gamma(0)(2). This implies that there are natural correspondences between the spaces of cusp forms on Gamma(0)(2) and the spaces of period polynomials. Based on these results, we will find explicit form of Hecke operators on Sw+2(Gamma(0)(2)). As an application of main theorems, we will also give an affirmative answer to a speculation of Imamoglu and Kohnen on a basis of Sw+2(Gamma(0)(2)).
引用
收藏
页码:321 / 350
页数:30
相关论文
共 21 条
[1]  
[Anonymous], 1990, Festschrift in honor of I. I. Piatetski- Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989)
[2]   MODULAR-FORMS ON GAMMA-0(N) WITH RATIONAL PERIODS [J].
ANTONIADIS, JA .
MANUSCRIPTA MATHEMATICA, 1992, 74 (04) :359-384
[3]   Representations of integers as sums of 32 squares [J].
Chan, HH ;
Chua, KS .
RAMANUJAN JOURNAL, 2003, 7 (1-3) :79-89
[4]   SUMS INVOLVING VALUES AT NEGATIVE INTEGERS OF L-FUNCTIONS OF QUADRATIC CHARACTERS [J].
COHEN, H .
MATHEMATISCHE ANNALEN, 1975, 217 (03) :271-285
[5]  
COHEN H, 1981, CERTAINES SOMMES SER
[6]   Hecke operators and derivatives of L-functions [J].
Diamantis, N .
COMPOSITIO MATHEMATICA, 2001, 125 (01) :39-54
[7]  
Diamond F., 2005, 1 COURSE MODULAR FOR, V228, DOI DOI 10.1007/978-0-387-27226-9.849
[8]  
Eichler M., 1957, MATH Z, V67, P267, DOI [10.1007/BF01258863, DOI 10.1007/BF01258863]
[9]   Hecke operators on weighted Dedekind symbols [J].
Fukuhara, S .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 593 :1-29
[10]   Explicit formulas for Hecke operators on cusp forms, Dedekind symbols and period polynomials [J].
Fukuhara, Shinji .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 607 :163-216