Convergence of random extremal quotient and product

被引:9
作者
Barakat, HM [1 ]
Nigm, EM [1 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, Zagazig, Egypt
关键词
weak convergence; random indices; random extremal quotient; random extremal product;
D O I
10.1016/S0378-3758(99)00012-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The limit distribution functions are obtained for the extremal quotient, extremal product and the geometric range with random indices under nonrandom centering and normalization. Moreover, this paper considers the conditions under which the cases of random and nonrandom indices give the same asymptotic results. Some illustrative examples are given. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 13 条
[1]  
Barakat H. M., 1996, B MALAYS MATH SCI SO, V19, P39
[2]  
Barakat H. M., 1996, J INDIAN STAT ASSOC, V34, P85
[3]   WEAK LIMITS OF RANDOM QUASI-RANGES AND RANDOM QUASI-HALF-RANGES [J].
BARAKAT, HM ;
NIGM, EM .
MICROELECTRONICS AND RELIABILITY, 1991, 31 (05) :941-953
[4]   ON THE LIMIT DISTRIBUTION OF THE EXTREMES OF A RANDOM NUMBER OF INDEPENDENT RANDOM-VARIABLES [J].
BARAKAT, HM ;
ELSHANDIDY, MA .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 26 (03) :353-361
[5]   Weak limit of the sample extremal quotient [J].
Barakat, HM .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 1998, 40 (01) :83-93
[6]  
Canard V. A., 1946, METHODS CLIMATOLOGY
[7]  
Galambos J., 1978, The asymptotic theory of extreme order statistics
[8]   THE EXTREMAL QUOTIENT [J].
GUMBEL, EJ ;
KEENEY, RD .
ANNALS OF MATHEMATICAL STATISTICS, 1950, 21 (04) :523-538
[9]   THE EXACT DISTRIBUTION OF THE EXTREMAL QUOTIENT [J].
GUMBEL, EJ ;
HERBACH, LH .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (03) :418-426
[10]  
Leadbetter M. R., 1983, Springer Series in Statistics, DOI 10.1007/978-1-4612-5449-2