Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations

被引:18
作者
Horvat, V [1 ]
Rogina, M [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
关键词
singularly perturbed volterra integro-differential equations; volterra integral equations; tension spline; collocation method;
D O I
10.1016/S0377-0427(01)00517-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical discretization of singularly perturbed Volterra integro-differential equations (VIDE) epsilony' (t) = q(1) (t) - q(2) (t) y (t) + integral(0)(1) K (t,s) y (s) ds, t is an element of I: = [0,T], y(0) = y(0) and Volterra integral equations (VIE) epsilony (t) = g (t) - integral(0)(1) K (t,s) y (s) ds, t is an element of I by tension spline collocation methods in certain tension spline spaces, where e is a small parameter satisfying 0 < F much less than< 1, and q(1), q(2), g and K are functions sufficiently smooth on their domains to ensure that Eqs. (*) and (**) posses a unique solution. We give an analysis of the global convergence properties of a new tension spline collocation solution for 0 < e much less than< 1 for singularly perturbed VIDE and VIE; thus, extending the existing theory for epsilon = 1 to the singularly perturbed case. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:381 / 402
页数:22
相关论文
共 18 条
[1]   SINGULARLY PERTURBED VOLTERRA INTEGRAL-EQUATIONS [J].
ANGELL, JS ;
OLMSTEAD, WE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (01) :1-14
[2]   SINGULARLY PERTURBED VOLTERRA INTEGRAL-EQUATIONS .1. [J].
ANGELL, JS ;
OLMSTEAD, WE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (06) :1150-1162
[3]  
[Anonymous], CWI MONOGRAPH
[4]  
[Anonymous], 1995, METHODS APPL ANAL
[5]  
Brunner H., 1999, CRM P LECT NOTES, V18, P15
[6]   Behaviour of exponential splines as tensions increase without bound [J].
Grandison, C .
JOURNAL OF APPROXIMATION THEORY, 1997, 89 (03) :289-307
[7]   IMPLICIT RUNGE-KUTTA METHODS FOR SINGULARLY PERTURBED INTEGRODIFFERENTIAL-SYSTEMS [J].
KAUTHEN, JP .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) :201-210
[8]   IMPLICIT RUNGE-KUTTA METHODS FOR SOME INTEGRODIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
KAUTHEN, JP .
APPLIED NUMERICAL MATHEMATICS, 1993, 13 (1-3) :125-134
[9]  
KAUTHEN JP, IN PRESS APPL NUMER
[10]   GB-splines of arbitrary order [J].
Ksasov, BI ;
Sattayatham, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 104 (01) :63-88