Existence of solutions for singular critical semilinear elliptic equation

被引:2
作者
Wang, Mengchao [1 ]
Zhang, Qi [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
关键词
Semilinear elliptic equation; Hardy potential; Hardy-Sobolev critical exponents; Mountain pass lemma; SOBOLEV-HARDY EXPONENTS; POSITIVE SOLUTIONS; MULTIPLICITY;
D O I
10.1016/j.aml.2019.02.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the existence of solutions for a singular critical semilinear elliptic equation. Some existence and multiplicity results are obtained by using mountain pass arguments and analysis techniques. The results of Ding and Tang (2007) and Kang (2007) and related are improved. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:217 / 223
页数:7
相关论文
共 13 条
[1]   Solutions for semilinear elliptic equations with critical exponents and Hardy potential [J].
Cao, DM ;
Han, PG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :521-537
[2]   A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms [J].
Cao, DM ;
Peng, SJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :424-434
[3]   Existence and multiplicity of positive solutions for a class of semilinear elliptic equations involving Hardy term and Hardy-Sobolev critical exponents [J].
Ding, Ling ;
Tang, Chun-Lei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) :1073-1083
[4]   Existence and multiplicity of solutions for semilinear elliptic equations with Hardy terms and Hardy-Sobolev critical exponents [J].
Ding, Ling ;
Tang, Chun-Lei .
APPLIED MATHEMATICS LETTERS, 2007, 20 (12) :1175-1183
[5]   Existence of solutions for singular critical growth semilinear elliptic equations [J].
Ferrero, A ;
Gazzola, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 177 (02) :494-522
[6]   Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents [J].
Ghoussoub, N ;
Yuan, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5703-5743
[7]   The role played by space dimension in elliptic critical problems [J].
Jannelli, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) :407-426
[8]   Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents in RN [J].
Kang, Dongsheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (01) :241-252
[9]   Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential [J].
Kang, DS ;
Peng, SJ .
APPLIED MATHEMATICS LETTERS, 2005, 18 (10) :1094-1100
[10]   Positive solutions for singular critical elliptic problems [J].
Kang, DS ;
Peng, SJ .
APPLIED MATHEMATICS LETTERS, 2004, 17 (04) :411-416