magnum.fe: A micromagnetic finite-element simulation code based on FEniCS

被引:69
作者
Abert, Claas [1 ,2 ,3 ]
Exl, Lukas [4 ]
Bruckner, Florian [5 ]
Drews, Andre [2 ,3 ]
Suess, Dieter
机构
[1] Univ Hamburg, Fachbereich Math, D-20146 Hamburg, Germany
[2] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany
[3] Univ Hamburg, Zentrum Mikrostrukturforsch, D-20355 Hamburg, Germany
[4] Univ Appl Sci, Dept Technol, A-3100 St Polten, Austria
[5] Vienna Univ Technol, Inst Solid State Phys, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Micromagnetics; Finite-element method; Landau-Lifshitz-Gilbert equation; COMPUTATION; TIME;
D O I
10.1016/j.jmmm.2013.05.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 35
页数:7
相关论文
共 31 条
[1]   Numerical methods for the stray-field calculation: A comparison of recently developed algorithms [J].
Abert, Claas ;
Exl, Lukas ;
Selke, Gunnar ;
Drews, Andre ;
Schrefl, Thomas .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 326 :176-185
[2]   A Fast Finite-Difference Method for Micromagnetics Using the Magnetic Scalar Potential [J].
Abert, Claas ;
Selke, Gunnar ;
Krueger, Benjamin ;
Drews, Andre .
IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (03) :1105-1109
[3]  
Alnaes M. S., AUTOMATED SOLUTION D
[4]   A convergent finite element approximation for Landau-Lifschitz-Gilbert equation [J].
Alouges, Francois ;
Kritsikis, Evaggelos ;
Toussaint, Jean-Christophe .
PHYSICA B-CONDENSED MATTER, 2012, 407 (09) :1345-1349
[5]   A NEW FINITE ELEMENT SCHEME FOR LANDAU-LIFCHITZ EQUATIONS [J].
Alouges, Francois .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (02) :187-196
[6]  
Beatson Rick, 1997, Wavelets, multilevel methods and elliptic PDEs, V1, P1
[7]   SOLVING MICROMAGNETIC PROBLEMS - TOWARDS AN OPTIMAL NUMERICAL-METHOD [J].
BERKOV, DV ;
RAMSTOCK, K ;
HUBERT, A .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1993, 137 (01) :207-225
[8]   USING MULTIPOLES DECREASES COMPUTATION TIME FOR MAGNETOSTATIC SELF-ENERGY [J].
BLUE, JL ;
SCHEINFEIN, MR .
IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (06) :4778-4780
[9]   3D FEM-BEM-coupling method to solve magnetostatic Maxwell equations [J].
Bruckner, Florian ;
Vogler, Christoph ;
Feischl, Michael ;
Praetorius, Dirk ;
Bergmair, Bernhard ;
Huber, Thomas ;
Fuger, Markus ;
Suess, Dieter .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (10) :1862-1866
[10]   FINITE-ELEMENT MODELING OF UNBOUNDED PROBLEMS USING TRANSFORMATIONS - A RIGOROUS, POWERFUL AND EASY SOLUTION [J].
BRUNOTTE, X ;
MEUNIER, G ;
IMHOFF, JF .
IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (02) :1663-1666