Lattice Boltzmann model for the convection-diffusion equation

被引:178
作者
Chai, Zhenhua [1 ]
Zhao, T. S. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 06期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
BOUNDARY-CONDITIONS; NATURAL-CONVECTION; BGK MODEL; DISPERSION; ADVECTION; SCHEME; FLOWS;
D O I
10.1103/PhysRevE.87.063309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a lattice Boltzmann (LB) model for the convection-diffusion equation (CDE) and show that the CDE can be recovered correctly from the model by the Chapman-Enskog analysis. The most striking feature of the present LB model is that it enables the collision process to be implemented locally, making it possible to retain the advantage of the lattice Boltzmann method in the study of the heat and mass transfer in complex geometries. A local scheme for computing the heat and mass fluxes is then proposed to replace conventional nonlocal finite-difference schemes. We further validate the present model and the local scheme for computing the flux against analytical solutions to several classical problems, and we show that both the model for the CDE and the computational scheme for the flux have a second-order convergence rate in space. It is also demonstrated the present model is more accurate than existing LB models for the CDE.
引用
收藏
页数:15
相关论文
共 39 条
  • [1] Lattice-Boltzmann Method for Complex Flows
    Aidun, Cyrus K.
    Clausen, Jonathan R.
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 : 439 - 472
  • [2] THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS
    BENZI, R
    SUCCI, S
    VERGASSOLA, M
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03): : 145 - 197
  • [3] Bird R B., 2002, Transportphenomena
  • [4] A unified lattice Boltzmann model for some nonlinear partial differential equations
    Chai, Zhenhua
    Shi, Baochang
    Zheng, Lin
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 36 (04) : 874 - 882
  • [5] Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor
    Chai, Zhenhua
    Zhao, T. S.
    [J]. PHYSICAL REVIEW E, 2012, 86 (01):
  • [6] Lattice Boltzmann method for fluid flows
    Chen, S
    Doolen, GD
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 : 329 - 364
  • [7] The lattice Boltzmann advection-diffusion model revisited
    Chopard, B.
    Falcone, J. L.
    Latt, J.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 171 : 245 - 249
  • [8] LATTICE BOLTZMANN COMPUTATIONS FOR REACTION-DIFFUSION EQUATIONS
    DAWSON, SP
    CHEN, S
    DOOLEN, GD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (02) : 1514 - 1523
  • [9] Deng B, 2005, CHINESE PHYS LETT, V22, P267, DOI 10.1088/0256-307X/22/2/001
  • [10] DHUMIERES D, 1994, PROGR ASTRONAUT AERO, V159, P450