Optimization of salt adsorption rate in membrane capacitive deionization

被引:291
作者
Zhao, R. [1 ,2 ]
Satpradit, O. [2 ]
Rijnaarts, H. H. M. [1 ]
Biesheuvel, P. M. [1 ,2 ]
van der Wal, A. [1 ]
机构
[1] Wageningen Univ, Dept Environm Technol, NL-6708 WG Wageningen, Netherlands
[2] Wetsus, Ctr Excellence Sustainable Water Technol, NL-8934 CJ Leeuwarden, Netherlands
关键词
Membrane capacitive deionization; Ion exchange membrane; Desalination; Water recovery; Salt adsorption rate; Porous electrode model; Constant current operation; Constant voltage operation; ION-EXCHANGE MEMBRANES; POROUS-ELECTRODES; WATER DESALINATION; BRACKISH-WATER; TRANSPORT-PROPERTIES; CARBON; ELECTROCHEMISTRY; PERFORMANCE; EFFICIENCY; ANIONS;
D O I
10.1016/j.watres.2013.01.025
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Membrane capacitive deionization (MCDI) is a water desalination technique based on applying a cell voltage between two oppositely placed porous electrodes sandwiching a spacer channel that transports the water to be desalinated. In MCDI, ion-exchange membranes are positioned in front of each porous electrode to prevent co-ions from leaving the electrode region during ion adsorption, thereby enhancing the salt adsorption capacity. MCDI can be operated at constant cell voltage (CV), or at a constant electrical current (CC). In this paper, we present both experimental and theoretical results for desalination capacity and rate in MCDI (both in the CV- and the CC-mode) as function of adsorption/desorption time, salt feed concentration, electrical current, and cell voltage. We demonstrate how by varying each parameter individually, it is possible to systematically optimize the parameter settings of a given system to achieve the highest average salt adsorption rate and water recovery. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1941 / 1952
页数:12
相关论文
共 50 条
[21]   Efficient and stable operation of capacitive deionization assessed by electrode and membrane asymmetry [J].
Barcelos, Kamilla M. ;
Oliveira, Kaique S. G. C. ;
Silva, Domingos S. A. ;
Urquieta-Gonzalez, Ernesto A. ;
Ruotolo, Luis A. M. .
ELECTROCHIMICA ACTA, 2021, 388
[22]   Concentration of High-Salinity Brine Using Single-Stage Membrane Capacitive Deionization [J].
Gao, Tie ;
He, Yunfei ;
Gong, Ao ;
Si, Wanpeng ;
Wang, Guangteng ;
Liang, Peng .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2025, 59 (19) :9827-9836
[23]   Electro-sorption of ammonium by a modified membrane capacitive deionization unit [J].
Sakar, Hacer ;
Celik, Isil ;
Canbolat, Cigdem Balcik ;
Keskinler, Bulent ;
Karagunduz, Ahmet .
SEPARATION SCIENCE AND TECHNOLOGY, 2017, 52 (16) :2591-2599
[24]   Pharmaceutical removal at low energy consumption using membrane capacitive deionization [J].
Son, Moon ;
Jeong, Kwanho ;
Yoon, Nakyung ;
Shim, Jaegyu ;
Park, Sanghun ;
Park, Jongkwan ;
Cho, Kyung Hwa .
CHEMOSPHERE, 2021, 276
[25]   Maximum salt adsorption tracking in capacitive deionization cell powered by photovoltaic solar panel [J].
Ghamrawi, Alaa ;
Saad, Maarouf ;
Mougharbel, Imad .
DESALINATION, 2023, 566
[26]   Energy Recovery in Membrane Capacitive Deionization [J].
Dlugolecki, Piotr ;
van der Wal, Albert .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (09) :4904-4910
[27]   Hardness removal in membrane capacitive deionization with a selective cation exchange membrane [J].
Choi, Jae-Hwan ;
Kim, Byung-Tae .
DESALINATION AND WATER TREATMENT, 2017, 66 :97-102
[28]   Dual-channel membrane capacitive deionization based on asymmetric ion adsorption for continuous water desalination [J].
Liu, Meijun ;
Xue, Zhiying ;
Zhang, Haifeng ;
Li, Yuna .
ELECTROCHEMISTRY COMMUNICATIONS, 2021, 125
[29]   Continuous operation of membrane capacitive deionization cells assembled with dissimilar potential of zero charge electrode pairs [J].
Omosebi, Ayokunle ;
Gao, Xin ;
Rentschler, Jeffery ;
Landon, James ;
Liu, Kunlei .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 446 :345-351
[30]   Energy Efficiency of Capacitive Deionization [J].
Wang, Li ;
Dykstra, J. E. ;
Lin, Shihong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (07) :3366-3378