Microfluidic artificial "vessels" for dynamic mechanical stimulation of mesenchymal stem cells

被引:49
作者
Zhou, Jing [1 ]
Niklason, Laura E. [1 ,2 ]
机构
[1] Yale Univ, Sch Med, Dept Anesthesiol, New Haven, CT 06519 USA
[2] Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
基金
美国国家卫生研究院;
关键词
SMOOTH-MUSCLE-CELLS; BETA; DIFFERENTIATION; STRAIN; PROTEINS; DISEASE;
D O I
10.1039/c2ib00171c
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cells in the cardiovascular system are constantly exposed to complex mechanical stimulation due to the pulsatile nature of blood flow and the haemodynamic forces that are key to the regulation of vascular development, remodeling and pathophysiology. Mechanical stretch can also modulate the differentiation of stem cells toward vascular cell lineages (i.e., vascular smooth muscle cells), and represent a critical factor in vascular tissue engineering. Here we report on the development of a microchip platform that can emulate several key aspects of the vascular mechanical environment, such as cyclic stimulation and circumferential strain. This chip consists of an array of microfluidic channels with widths ranging from 20 to 500 micrometers. These channels are covered by suspended deformable membranes, on which cells are cultured and stimulated by cyclic circumferential strain of up to 20% via hydrodynamic actuation of the fluid in the microfluidic channels, thereby mimicking the biomechanical conditions of small blood vessels. We show that human mesenchymal stem cells (MSCs) can be cultured and continuously stimulated by cyclic stretch over a period of 7 days with no evidence of device fatigue or performance degradation. We observed localization and alignment of MSCs when mechanical stretch is larger than 10%, indicating the importance of mechanical stimulation in modulating cellular behavior. We further demonstrated simultaneous detection of proteins in multiple signaling pathways, including SMAD1/SMAD2 and canonical Wnt/beta-catenin. This microchip represents a generic and versatile platform for high-throughput and rapid screening of cellular responses, including signal transduction cascades, in response to mechanical cues. The system emulates the physiological conditions of blood vessels and other tissues that are subject to cyclic strain, and may have a wide range of applications in the fields of stem cell mechanobiology, vascular tissue engineering, and other areas of regenerative medicine.
引用
收藏
页码:1487 / 1497
页数:11
相关论文
共 28 条
[1]   Signal transduction by the TGF-β superfamily [J].
Attisano, L ;
Wrana, JL .
SCIENCE, 2002, 296 (5573) :1646-1647
[2]   Mesenchymal stem cells: building blocks for molecular medicine in the 21st century [J].
Caplan, AI ;
Bruder, SP .
TRENDS IN MOLECULAR MEDICINE, 2001, 7 (06) :259-264
[3]   Smad-dependent and Smad-independent pathways in TGF-β family signalling [J].
Derynck, R ;
Zhang, YE .
NATURE, 2003, 425 (6958) :577-584
[4]   Differentiation plasticity regulated by TGF-β family proteins in development and disease [J].
Derynck, Rik ;
Akhurst, Rosemary J. .
NATURE CELL BIOLOGY, 2007, 9 (09) :1000-1004
[5]  
Dijke P.ten., 2006, Smad signal transduction: Smads in proliferation, differentiation and disease
[6]   In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells [J].
Gojo, S ;
Gojo, N ;
Takeda, Y ;
Mori, T ;
Abe, H ;
Kyo, S ;
Hata, J ;
Umezawa, A .
EXPERIMENTAL CELL RESEARCH, 2003, 288 (01) :51-59
[7]   Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs) [J].
Gong, Zhaodi ;
Niklason, Laura E. .
FASEB JOURNAL, 2008, 22 (06) :1635-1648
[8]   Computerized microfluidic cell culture using elastomeric channels and Braille displays [J].
Gu, W ;
Zhu, XY ;
Futai, N ;
Cho, BS ;
Takayama, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (45) :15861-15866
[9]   Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: Implications for vascular tissue-engineering applications [J].
Hamilton, DW ;
Maul, TM ;
Vorp, DA .
TISSUE ENGINEERING, 2004, 10 (3-4) :361-369
[10]   CELL-SURFACE ANTIGENS ON HUMAN MARROW-DERIVED MESENCHYMAL CELLS ARE DETECTED BY MONOCLONAL-ANTIBODIES [J].
HAYNESWORTH, SE ;
BABER, MA ;
CAPLAN, AI .
BONE, 1992, 13 (01) :69-80