On the rate of convergence of Schwarz waveform relaxation methods for the time-dependent Schrodinger equation

被引:6
作者
Antoine, X. [1 ]
Lorin, E. [2 ,3 ]
机构
[1] Univ Lorraine, UMR CNRS 7502, Inst Elie Cartan Lorraine, Inria Nancy Grand Est,SPHINX Team, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3T 1J4, Canada
[3] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Schrodinger equation; Domain decomposition method; Pseudo-differential operator calculus; ABSORBING BOUNDARY-CONDITIONS; DOMAIN DECOMPOSITION METHODS; LINEAR SCHRODINGER; NUMERICAL-SIMULATION; DIRICHLET-NEUMANN;
D O I
10.1016/j.cam.2018.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to the analysis of the rate of convergence of the classical and quasi-optimal Schwarz waveform relaxation (SWR) method for solving the linear Schrodinger equation with space-dependent potential. The strategy is based on i) the rewriting of the SWR algorithm as a fixed point algorithm in frequency space, and ii) the explicit construction of contraction factors thanks to pseudo-differential calculus. Some numerical experiments illustrating the analysis are also provided. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:15 / 30
页数:16
相关论文
共 29 条
[1]  
Alinhac S., 2007, GRADUATE STUDIES MAT, V82
[2]  
[Anonymous], 2013, LINEAR PARTIAL DIFFE
[3]   Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrodinger equation [J].
Antoine, X ;
Besse, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 188 (01) :157-175
[4]   An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrodinger and Gross-Pitaevskii equations [J].
Antoine, X. ;
Lorin, E. .
NUMERISCHE MATHEMATIK, 2017, 137 (04) :923-958
[5]   A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations [J].
Antoine, X. ;
Lorin, E. ;
Tang, Q. .
MOLECULAR PHYSICS, 2017, 115 (15-16) :1861-1879
[6]   Lagrange-Schwarz Waveform Relaxation domain decomposition methods for linear and nonlinear quantum wave problems [J].
Antoine, X. ;
Lorin, E. .
APPLIED MATHEMATICS LETTERS, 2016, 57 :38-45
[7]   Domain Decomposition Method and High-Order Absorbing Boundary Conditions for the Numerical Simulation of the Time Dependent Schrodinger Equation with Ionization and Recombination by Intense Electric Field [J].
Antoine, X. ;
Lorin, E. ;
Bandrauk, A. D. .
JOURNAL OF SCIENTIFIC COMPUTING, 2015, 64 (03) :620-646
[8]   Construction, structure and asymptotic approximations of a microdifferential transparent boundary condition for the linear Schrodinger equation [J].
Antoine, X ;
Besse, C .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07) :701-738
[9]   ASYMPTOTIC ESTIMATES OF THE CONVERGENCE OF CLASSICAL SCHWARZ WAVEFORM RELAXATION DOMAIN DECOMPOSITION METHODS FOR TWO-DIMENSIONAL STATIONARY QUANTUM WAVES [J].
Antoine, Xavier ;
Hou, Fengji ;
Lorin, Emmanuel .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (04) :1569-1596
[10]   Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Antoine, Xavier ;
Bao, Weizhu ;
Besse, Christophe .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) :2621-2633