THE HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT AND THEIR APPLICATIONS

被引:58
作者
Wang, Hongbin [1 ]
Liu, Zongguang [1 ]
机构
[1] China Univ Min & Technol Beijing, Dept Math, Beijing 100083, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2012年 / 16卷 / 04期
基金
中国国家自然科学基金;
关键词
Herz-type Hardy space; Variable exponent; Atomic decomposition; Molecular decomposition; Operators; MAXIMAL-FUNCTION; BOUNDEDNESS; OPERATORS;
D O I
10.11650/twjm/1500406739
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a certain Herz-type Hardy spaces with variable exponent are introduced, and characterizations of these spaces are established in terms of atomic and molecular decompositions. Using these decompositions, the authors obtain the boundedness of some operators on the Herz-type Hardy spaces with variable exponent.
引用
收藏
页码:1363 / 1389
页数:27
相关论文
共 13 条
  • [1] [Anonymous], 2001, Expo. Math.
  • [2] Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
  • [3] Cruz-Uribe D, 2003, ANN ACAD SCI FENN-M, V28, P223
  • [4] Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces
    Diening, L
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (08): : 657 - 700
  • [5] Diening L, 2004, MATH INEQUAL APPL, V7, P245
  • [6] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [7] Overview of differential equations with non-standard growth
    Harjulehto, Petteri
    Hasto, Peter
    Le, Ut V.
    Nuortio, Matti
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4551 - 4574
  • [8] Izuki M, 2010, ANAL MATH, V36, P33, DOI 10.1007/s10476-010-0102-8
  • [9] KOVACIK O, 1991, CZECH MATH J, V41, P592
  • [10] LU SZ, 1995, SCI CHINA SER A, V38, P662