Diagnosis Of Interstitial Lung Disease By Pattern Diagnosis Classification

被引:5
作者
Ajin, M. [1 ]
Mredhula, L. [1 ]
机构
[1] MES Coll Engn, Dept Elect & Commun Engn, Kuttippuram 679573, Kerala, India
来源
7TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2017) | 2017年 / 115卷
关键词
Interstitial lung disease; pattern classification; feature extraction; Deep CNN; ANN; KNN; Hybrid kernel based SVM classifier;
D O I
10.1016/j.procs.2017.09.126
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diagnosis of interstitial lung disease (ILD) using pattern classification consists of image preprocessing, feature extraction, selection and classification. Feature extraction is initially done using textons and then LTCOP method is used. Classification is initially done using ANN, KNN and Deep CNN classifiers. Deep CNN produces greater accuracy than ANN and KNN classifiers. Feature selection is initially done using ReLu activation and then histogram method is used. Hybrid kernel based SVM classification is a new method that produces more accuracy compared to ANN, KNN and Deep CNN classifiers. Performance of classification are determined using confusion matrix, recall rate, precision, F-average and accuracy. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:195 / 208
页数:14
相关论文
共 25 条
[1]  
[Anonymous], IEEE T BIOMEDICAL IM
[2]  
[Anonymous], J NEUROCOMPUTING
[3]  
[Anonymous], INT J ELECT COMPUTER
[4]  
[Anonymous], 13 INT C MICCAI
[5]  
[Anonymous], J MED IMAGING HLTH I
[6]  
[Anonymous], P SPIE
[7]  
Anthimopoulos M, 2014, IEEE ENG MED BIO, P6040, DOI 10.1109/EMBC.2014.6945006
[8]   Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network [J].
Anthimopoulos, Marios ;
Christodoulidis, Stergios ;
Ebner, Lukas ;
Christe, Andreas ;
Mougiakakou, Stavroula .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1207-1216
[9]   Usual interstitial pneumonia - Quantitative assessment of high-resolution computed tomography findings by computer-assisted texture-based image analysis [J].
Delorme, S ;
KellerReichenbecher, MA ;
Zuna, I ;
Schlegel, W ;
vanKaick, G .
INVESTIGATIVE RADIOLOGY, 1997, 32 (09) :566-574
[10]   Near-Affine-Invariant Texture Learning for Lung Tissue Analysis Using Isotropic Wavelet Frames [J].
Depeursinge, Adrien ;
Van de Ville, Dimitri ;
Platon, Alexandra ;
Geissbuhler, Antoine ;
Poletti, Pierre-Alexandre ;
Mueller, Henning .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2012, 16 (04) :665-675