Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: ameliorating effects of (-)-epigallocatechin-3-gallate

被引:94
作者
Yan, Jiong [1 ]
Feng, Zhihui [1 ,2 ]
Liu, Jia [1 ]
Shen, Weili [3 ]
Wang, Ying [4 ]
Wertz, Karin [4 ]
Weber, Peter [4 ]
Long, Jiangang [1 ]
Liu, Jiankang [1 ,5 ]
机构
[1] Xi An Jiao Tong Univ, Sch Life Sci & Technol, Key Lab Biomed Informat Engn, Dept Biol & Engn,Inst Mitochondrial Biol & Med,Mi, Xian 710049, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Nutr Sci, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Ruijin Hosp, Shanghai 200030, Peoples R China
[4] DSM Nutr Prod, R&D Human Nutr & Hlth, Basel, Switzerland
[5] Univ Kentucky, Coll Med, Grad Ctr Toxicol, Lexington, KY USA
基金
中国国家自然科学基金;
关键词
Type 2 diabetes mellitus; Hyperglycemia; Insulin resistance; Oxidative stress; Mitochondrial dysfunction; Fission; Autophagy; MANGANESE SUPEROXIDE-DISMUTASE; ACETYL-L-CARNITINE; ALPHA-LIPOIC ACID; BETA-CELL MASS; INSULIN-RESISTANCE; OXIDATIVE STRESS; SKELETAL-MUSCLE; EPIGALLOCATECHIN GALLATE; GLUCOSE-METABOLISM; GREEN TEA;
D O I
10.1016/j.jnutbio.2011.03.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidative stress and mitochondrial dysfunction are known to play important roles in type 2 diabetes mellitus (T2DM) and insulin resistance. However, the pathology of T2DM remains complicated; in particular, the mechanisms of mitochondrial dysfunction in skeletal muscle and other insulin-sensitive tissues are as yet unclear. In the present study, we investigated the underlying mechanisms of oxidative stress and mitochondrial dysfunction by focusing on mitochondrial dynamics, including mitochondrial biogenesis and autophagy, in skeletal muscle of a nonobese diabetic animal model - the Goto-Kakizaki (GK) rat. The results showed that GK rats exhibited impaired glucose metabolism, increased oxidative stress and decreased mitochondrial function. These dysfunctions were found to be associated with induction of LC3B, Beclin1 and DRP1 (key molecules mediating the autophagy pathway), while they appeared not to affect the mitochondrial biogenesis pathway. In addition, (-)-epigallocatechin-3-gallate (EGCG) was tested as a potential autophagy-targeting nutrient, and we found that EGCG treatment improved glucose tolerance and glucose homeostasis in GK rats, and reduced oxidative stress and mitochondria] dysfunction in skeletal muscle. Amelioration of excessive muscle autophagy in GK rats through the down-regulation of the ROS-ERK/JNK-p53 pathway leads to improvement of glucose metabolism, reduction of oxidative stress and inhibition of mitochondrial loss and dysfunction. These results suggest (a) that hyperglycemia-associated oxidative stress may induce autophagy through up-regulation of the ROS-ERK/JNK-p53 pathway, which may contribute to mitochondrial loss in soleus muscle of diabetic GK rats, and (b) that EGCG may be a potential autophagy regulator useful in treatment of insulin resistance. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:716 / 724
页数:9
相关论文
共 53 条
[1]   Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans [J].
Anderson, Ethan J. ;
Lustig, Mary E. ;
Boyle, Kristen E. ;
Woodlief, Tracey L. ;
Kane, Daniel A. ;
Lin, Chien-Te ;
Price, Jesse W., III ;
Kang, Li ;
Rabinovitch, Peter S. ;
Szeto, Hazel H. ;
Houmard, Joseph A. ;
Cortright, Ronald N. ;
Wasserman, David H. ;
Neufer, P. Darrell .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (03) :573-581
[2]   Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1 a and elicits cellular responses in the presence and absence of insulin [J].
Anton, Siobhan ;
Melville, Laura ;
Rena, Graham .
CELLULAR SIGNALLING, 2007, 19 (02) :378-383
[3]   Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients [J].
Befroy, Douglas E. ;
Petersen, Kitt Falk ;
Dufour, Sylvie ;
Mason, Graeme F. ;
de Graaf, Robin A. ;
Rothman, Douglas L. ;
Shulman, Gerald I. .
DIABETES, 2007, 56 (05) :1376-1381
[4]   Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice [J].
Bonnard, Charlotte ;
Durand, Annie ;
Peyrol, Simone ;
Chanseaume, Emilie ;
Chauvin, Marie-Agnes ;
Morio, Beatrice ;
Vidal, Hubert ;
Rieusset, Jennifer .
JOURNAL OF CLINICAL INVESTIGATION, 2008, 118 (02) :789-800
[5]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820
[6]   Mitochondrial Fusion Is Required for mtDNA Stability in Skeletal Muscle and Tolerance of mtDNA Mutations [J].
Chen, Hsiuchen ;
Vermulst, Marc ;
Wang, Yun E. ;
Chomyn, Anne ;
Prolla, Tomas A. ;
McCaffery, J. Michael ;
Chan, David C. .
CELL, 2010, 141 (02) :280-289
[7]   Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells [J].
Chen, Y. ;
McMillan-Ward, E. ;
Kong, J. ;
Israels, S. J. ;
Gibson, S. B. .
CELL DEATH AND DIFFERENTIATION, 2008, 15 (01) :171-182
[8]   ERK and JNK mediate TNFα-induced p53 activation in apoptotic and autophagic L929 cell death [J].
Cheng, Yan ;
Qiu, Feng ;
Tashiro, Shin-ichi ;
Onodera, Satoshi ;
Ikejima, Takashi .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 376 (03) :483-488
[9]   Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase [J].
Collins, Qu Fan ;
Liu, Hui-Yu ;
Pi, Jingbo ;
Liu, Zhenqi ;
Quon, Michael J. ;
Cao, Wenhong .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (41) :30143-30149
[10]   EFFECTS OF INSULIN ON PERIPHERAL AND SPLANCHNIC GLUCOSE-METABOLISM IN NONINSULIN-DEPENDENT (TYPE-II) DIABETES-MELLITUS [J].
DEFRONZO, RA ;
GUNNARSSON, R ;
BJORKMAN, O ;
OLSSON, M ;
WAHREN, J .
JOURNAL OF CLINICAL INVESTIGATION, 1985, 76 (01) :149-155