Transition from Molecular Vibrations to Phonons in Atomically Precise Cadmium Selenide Quantum Dots

被引:39
作者
Beecher, Alexander N. [2 ]
Dziatko, Rachel A. [1 ]
Steigerwald, Michael L. [2 ]
Owen, Jonathan S. [2 ]
Crowther, Andrew C. [1 ]
机构
[1] Barnard Coll, Dept Chem, New York, NY 10027 USA
[2] Columbia Univ, Dept Chem, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
RAMAN-SCATTERING; RESONANCE RAMAN; LIGAND-EXCHANGE; CDSE NANOCRYSTALS; SIZE-DEPENDENCE; OPTICAL PHONONS; SPECTRA; CHEMISTRY; SURFACE; ABSORPTION;
D O I
10.1021/jacs.6b10705
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We use micro-Raman spectroscopy to measure the vibrational structure of the atomically precise cadmium selenide quantum dots Cd35Se20X30L30, Cd56Se35X42L42., and Cd84Se56X56L56. These quantum dots have benzoate (X) and n-butylamine (L) ligands and tetrahedral (T-d) shape with edges that range from 1.7 to 2.6 nm in length. Investigating this previously unexplored size regime allows us to identify the transition from molecular vibrations to bulk phonons in cadmium selenide quantum dots for the first time. Room temperature Raman spectra have broad CdSe peaks at 175 and 200 cm(-1). Density functional theory calculations assign these peaks to molecular surface and interior vibrational modes, respectively, and show that the interior, surface, and ligand atom motion is strongly coupled. The interior peak intensity increases relative to the surface peak as the cluster size increases due to the relative increase in the polarizability of interior modes with quantum dot size. The Raman spectra do not change with temperature for molecular Cd35Se20X30L30, while the interior peak narrows and shifts to higher energy as temperature decreases for Cd84Se56X56L56, a spectral evolution typical of a phonon. This result shows that the single bulk unit cell contained within Cd84Se56X56L56 is sufficient to apply a phonon confinement model, and that Cd56Se35X42L42, with its 2.1 nm edge length, marks the boundary between molecular vibrations and phonons.
引用
收藏
页码:16754 / 16763
页数:10
相关论文
共 66 条
[1]   DFT Simulation and Vibrational Analysis of the IR and Raman Spectra of a CdSe Quantum Dot Capped by Methylamine and Trimethylphosphine Oxide Ligands [J].
Abuelela, Ahmed M. ;
Mohamed, Tarek A. ;
Prezhdo, Oleg V. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (27) :14674-14681
[2]   THEORY OF RAMAN INTENSITIES [J].
ALBRECHT, AC .
JOURNAL OF CHEMICAL PHYSICS, 1961, 34 (05) :1476-&
[3]   RESONANCE RAMAN-SCATTERING AND OPTICAL-ABSORPTION STUDIES OF CDSE MICROCLUSTERS AT HIGH-PRESSURE [J].
ALIVISATOS, AP ;
HARRIS, TD ;
BRUS, LE ;
JAYARAMAN, A .
JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (10) :5979-5982
[4]   ELECTRON-VIBRATION COUPLING IN SEMICONDUCTOR CLUSTERS STUDIED BY RESONANCE RAMAN-SPECTROSCOPY [J].
ALIVISATOS, AP ;
HARRIS, TD ;
CARROLL, PJ ;
STEIGERWALD, ML ;
BRUS, LE .
JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (07) :3463-3468
[5]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[6]   Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding [J].
Anderson, Nicholas C. ;
Hendricks, Mark P. ;
Choi, Joshua J. ;
Owen, Jonathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (49) :18536-18548
[7]   Soluble, Chloride-Terminated CdSe Nanocrystals: Ligand Exchange Monitored by 1H and 31P NMR Spectroscopy [J].
Anderson, Nicholas C. ;
Owen, Jonathan S. .
CHEMISTRY OF MATERIALS, 2013, 25 (01) :69-76
[8]   ANHARMONIC EFFECTS IN LIGHT-SCATTERING DUE TO OPTICAL PHONONS IN SILICON [J].
BALKANSKI, M ;
WALLIS, RF ;
HARO, E .
PHYSICAL REVIEW B, 1983, 28 (04) :1928-1934
[9]   Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots [J].
Baranov, AV ;
Rakovich, YP ;
Donegan, JF ;
Perova, TS ;
Moore, RA ;
Talapin, DV ;
Rogach, AL ;
Masumoto, Y ;
Nabiev, I .
PHYSICAL REVIEW B, 2003, 68 (16)
[10]   THE QUANTUM-MECHANICS OF LARGER SEMICONDUCTOR CLUSTERS (QUANTUM DOTS) [J].
BAWENDI, MG ;
STEIGERWALD, ML ;
BRUS, LE .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1990, 41 :477-496