We study BDF theory in the context of (not necessarily simple) purely infinite corona algebras. Let B be a nonunital separable simple C*-algebra with standard regularity properties for which C(B) is purely infinite (though not necessarily simple). Let A be a separable nuclear C*-algebra. We prove a BDF Voiculescu decomposition theorem for maps from A to C(B), and use this to prove that Ext(sigma) (A, B) is a group. Then, restricting to the caseA = C(X), for some compact metric space X, and B has continuous scale, we provide characterizations of the neutral element for Ext(C(X), B).
机构:
Univ Cincinnati, Dept Math, POB 210025, Cincinnati, OH 45221 USAUniv Cincinnati, Dept Math, POB 210025, Cincinnati, OH 45221 USA
Kaftal, Victor
Ng, P. W.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Louisiana, Dept Math, 217 Max D Doucet Hall,POB 43568, Lafayette, LA 70504 USAUniv Cincinnati, Dept Math, POB 210025, Cincinnati, OH 45221 USA
Ng, P. W.
Zhang, Shuang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cincinnati, Dept Math, POB 210025, Cincinnati, OH 45221 USAUniv Cincinnati, Dept Math, POB 210025, Cincinnati, OH 45221 USA
机构:
Georg August Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, GermanyGeorg August Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany