The Euler-Jacobi-Lie integrability theorem

被引:29
作者
Kozlov, Valery V. [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
关键词
symmetry field; integral invariant; nilpotent group; magnetic hydrodynamics; NONHOLONOMIC SYSTEMS; EXPLICIT INTEGRATION; INVARIANT-MANIFOLDS; SYMMETRY; FLOWS;
D O I
10.1134/S1560354713040011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses a class of problems associated with the conditions for exact integrability of systems of ordinary differential equations expressed in terms of the properties of tensor invariants. The general theorem of integrability of the system of n differential equations is proved, which admits n - 2 independent symmetry fields and an invariant volume n-form (integral invariant). General results are applied to the study of steady motions of a continuum with infinite conductivity.
引用
收藏
页码:329 / 343
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 1993, GRAD TEXTS MATH
[2]  
Arnol'd V. I., 1966, PMM-J APPL MATH MEC, V30, P223, DOI 10.1016/0021-8928(66)90070-0
[3]  
ARNOLD VI, 1993, ENCYCL MATH SCI, V3, P1
[4]  
Bolotin SV, 1995, RUSS J MATH PHYS, V3, P279
[5]   Hamiltonization of Non-Holonomic Systems in the Neighborhood of Invariant Manifolds [J].
Bolsinov, A. V. ;
Borisov, A. V. ;
Mamaev, I. S. .
REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05) :443-464
[6]   Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems [J].
Borisov, A. V. ;
Mamaev, I. S. .
REGULAR & CHAOTIC DYNAMICS, 2008, 13 (05) :443-490
[7]   Generalized Chaplygin's transformation and explicit integration of a system with a spherical support [J].
Borisov, Alexey V. ;
Kilin, Alexander A. ;
Mamaev, Ivan S. .
REGULAR & CHAOTIC DYNAMICS, 2012, 17 (02) :170-190
[8]   Routh Symmetry in the Chaplygin's Rolling Ball [J].
Kim, Byungsoo .
REGULAR & CHAOTIC DYNAMICS, 2011, 16 (06) :663-670
[9]  
Kozlov V. V., 1996, Ergeb. Math. Grenzgeb., V31
[10]  
Kozlov V. V., 1985, USP MEKH, V8, P85