Exact stability test and stabilization for fractional systems

被引:10
作者
Kaminski, J. Y. [1 ]
Shorten, R. [2 ]
Zeheb, E. [3 ,4 ]
机构
[1] Holon Inst Technol, Fac Sci, Dept Appl Math, Holon, Israel
[2] IBM Res Corp, Optimizat Control & Decis Sci, Dublin, Ireland
[3] Holon Inst Technol, Fac Sci, Holon, Israel
[4] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
基金
爱尔兰科学基金会;
关键词
Fractional order systems; Stability; Regular chains algorithms;
D O I
10.1016/j.sysconle.2015.08.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we point out a connection between regular chains and the stability of fractional order systems. This observation leads to an elementary test for the stability of commensurate fractional systems. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:95 / 99
页数:5
相关论文
共 24 条
[1]  
[Anonymous], P 2 IFAC WORKSH FRAC
[2]   Analysis of fractional delay systems of retarded and neutral type [J].
Bonnet, C ;
Partington, JR .
AUTOMATICA, 2002, 38 (07) :1133-1138
[3]   Triangular decomposition of semi-algebraic systems [J].
Chen, Changbo ;
Davenport, James H. ;
May, John P. ;
Maza, Marc Moreno ;
Xia, Bican ;
Xiao, Rong .
JOURNAL OF SYMBOLIC COMPUTATION, 2013, 49 :3-26
[4]   Mittag-Leffler functions and transmission lines [J].
Clarke, T ;
Achar, BNN ;
Hanneken, JW .
JOURNAL OF MOLECULAR LIQUIDS, 2004, 114 (1-3) :159-163
[5]  
Datta A., 2000, ADV IND CON
[6]  
Farges C., 2001, ADV DIFFERENTIAL EQU
[7]   Pseudo-state feedback stabilization of commensurate fractional order systems [J].
Farges, Christophe ;
Moze, Mathieu ;
Sabatier, Jocelyn .
AUTOMATICA, 2010, 46 (10) :1730-1734
[8]  
Hassett B., 2007, INTRO ALGEBRAIC GEOM
[9]  
Jury E.I., 1982, INNERS STABILITY DYN, V2nd
[10]   AN ALGEBRAIC ALGORITHM FOR DETERMINING THE DESIRED GAIN OF MULTIVARIABLE FEEDBACK-SYSTEMS [J].
JURY, EI ;
ZEHEB, E .
INTERNATIONAL JOURNAL OF CONTROL, 1983, 37 (05) :1081-1094